Open
Close

Биография диофанта. Реферат: Диофант

Диофант Александрийский – древнегреческий математик.

    До сих пор не выяснены ни год рождения, ни дата смерти Диофанта; полагают, что он жил в 3 веке нашей эры. Из работ Диофанта самой важной является “Арифметика”, из 13 книг которой только 6 сохранились до наших дней. В сохранившихся книгах Диофанта содержится 189 задач с решениями. В пяти книгах содержатся методы решения неопределенных уравнений. Это и составляет основной вклад Диофанта в математику


Произведения Диофанта

    Его «Арифметика» стала поворотным пунктом в развитии алгебры и теории чисел. Именно здесь произошёл окончательный отказ от геометрической алгебры. В начале своего труда Диофант поместил краткое введение, ставшее первым изложени­ем основ алгебры. В нём строится поле рациональных чисел и вводится буквенная символика. Там же формулируются правила действий с многочленами и уравнениями. Труды Диофанта имели фундаментальное значение для развития алгебры и теории чисел. С именем этого учёного связано появление и развитие алгебраической геометрии, проблемами которой впоследствии занимались Леонард Эйлер, Карл Якоби и другие авторы.



Способ решения уравнения 1-й степени Диофанта:

  • «Если теперь в какой-нибудь задаче те же степени неизвестного встречаются в обеих частях уравнения, но с разными коэффициентами, то мы должны вычитать равные из равных, пока не получим одного члена, равного одному числу.

  • Если в одной или в обеих частях есть члены вычитаемые, то эти члены должны быть прибавлены к обеим частям так, чтобы в обеих частях были только прибавляемые.

  • Затем снова нужно отнимать равные от равных, пока не останется только по одному члену с каждой стороны».

  • Таким путем Диофант достигал того, чего мы добиваемся перенесением известных членов в одну сторону равенства, а неизвестных - в другую, приведением подобных членов и делением на коэффициент при неизвестном.

  • При этом надо отметить, что Диофант, как и все древние математики, избегал действия деления, заменяя его повторным вычитанием.


Диофант делает решительный шаг - вводит отрицательные числа.

    Однако для построения алгебры одних только положительных дробей недостаточно, и Диофант делает решительный шаг - вводит отрицательные числа. Для этого он выбирает метод, известный теперь как аксиоматический: он определяет новый объект, который назы­вает «недостатком», и формулирует правила действий с ним. Диофант пишет: «Недостаток, умноженный на недостаток, дает наличие; недостаток же, умноженный на наличие, даёт недостаток». Это «правило знаков» мы можем записать так:

  • (-) х (-) = (+) ,

  • (-) х (+) = (-) .

  • Правила сложения и вычитания для новых чисел Диофант не излагает, он просто пользуется ими в своих книгах. И все же отрицательные числа Диофант применяет только в промежуточных вычислениях, а в качестве решения всегда выбирает положительное ра­циональное число.


Задача о пифагоровых тройках .

  • Но в целых числах решают не только линейные уравнения. Древнейшей задачей такого рода является задача о натуральных решениях уравнения х2 + у2 = z2 Что напоминает вам это уравнение? Какие пифагоровы тройки вам известны? (3,4,5; 6,8,10; 5,12,13; 7,24,25; 9,40,41).


Задача Метродора о Диофанте из Палатинской антологии

    Прах Диофанта гробница покоит: дивись ей - и камень Мудрым искусством его скажет усопшего век. Волей богов шестую часть жизни он прожил ребенком и половину шестой встретил с пушком на щеках. Только минула седьмая, с подругою он обручился. С нею пять лет проведя, сына дождался мудрец. Только полжизни отцовской возлюбленный сын его прожил, Отнят он был у отца ранней могилой своей. Дважды два года родитель оплакивал тяжкое горе. Тут и увидел предел жизни печальной своей.


Скудные сведения о Диофанте может дополнить нам лишь надпись на надгробном камне, сформулированная задача в стихах:


Пусть Диофант прожил x

  • Пусть Диофант прожил x лет. Составим и решим уравнение:


Муниципальное общеобразовательное учреждение

«Лицей №10» г.Перми

Диофант. Диофантовы уравнения

Выполнила работу

Ильина Яна,

ученица 11 б класса

Руководитель

Золотухина Л. В,

учитель математики

Пермь, 2010


Введение…………………………………………………………………….3

1. Диофант………………………………………………………………..…4

2. Числа и символы…………………………………………………………6

3. Диофантово уравнение………………………………………………..…8

4. Способы решения………………………………………………………..12

Заключение…………………………………………………………………15

Список литературы…………………………………………………………16


Введение

Сегодняшние школьники решают различные уравнения. В части С заданий ЕГЭ встречается интересное уравнение, которое называется Диофантово уравнение. В своих работах Диофант не только поставил проблему решения неопределённых уравнений в рациональных числах, но и дал некоторые общие методы их решения. Эти методы будут очень полезны для сегодняшних одиннадцатиклассников, которым предстоит сдавать экзамен по математике.

Диофант внес такой же огромный вклад в развитие математики, как и Архимед. Так, например, поступал Архимед: определяя площади эллипса, сегмента параболы, поверхности шара, объёмы шара и других тел, он применял метод интегральных сумм и метод предельного перехода, однако нигде не дал общего абстрактного описания этих методов. Учёным XVI–XVII веков приходилось тщательно изучать и перелагать по-новому его сочинения, чтобы выделить оттуда методы Архимеда. Аналогично обстоит дело и с Диофантом. Его методы были поняты и применены для решения новых задач Виетом и Ферма, т.е. в то же время, когда был разгадан и Архимед.

1. Диофант

Диофант представляет одну из наиболее трудных загадок в истории науки. Нам не известны ни время, когда он жил, ни предшественники его, которые работали бы в той же области. Труды его подобны сверкающему огню среди полной непроницаемой тьмы. Промежуток времени, когда мог жить Диофант, составляет полтысячелетия! Нижняя грань этого промежутка определяется без труда: в своей книге о многоугольных числах Диофант неоднократно упоминает математика Гипсикла Александрийского, который жил в середине II века до н. э. С другой стороны, в комментариях Теона Александрийского к «Альмагесту» знаменитого астронома Птолемея помещён отрывок из сочинения Диофанта. Теон жил в середине IV века н. э. Этим определяется верхняя грань этого промежутка. Итак, 500 лет!

Зато место жительства Диофанта хорошо известно - это знаменитая Александрия, центр научной мысли эллинистического мира.

Чтобы исчерпать всё известное о личности Диофанта, приведём дошедшее до нас стихотворение-загадку:

Прах Диофанта гробница покоит; дивись ей - и камень
Мудрым искусством его скажет усопшего век.
Волей богов шестую часть жизни он прожил ребёнком
И половину шестой встретил с пушком на щеках.
Только минула седьмая, с подругою он обручился.
С нею пять лет проведя сына дождался мудрец;
Только полжизни отцовской возлюбленный сын его прожил.
Отнят он был у отца ранней могилой своей.
Дважды два года родитель оплакивал тяжкое горе,
Тут и увидел предел жизни печальной своей.

Отсюда нетрудно подсчитать, что Диофант прожил 84 года. Однако для этого вовсе не нужно владеть искусством Диофанта! Достаточно уметь решать уравнение 1-й степени с одним неизвестным, а это умели делать египетские писцы ещё за 2 тысячи лет до н. э.

Но наиболее загадочным представляется творчество Диофанта. До нас дошло шесть книг из 13, которые были объединены в «Арифметику». Стиль и содержание этих книг резко отличаются от классических античных сочинений по теории чисел и алгебре, образцы которых мы знаем по «Началам» Евклида, его «Данным», леммам из сочинений Архимеда и Аполлония. «Арифметика», несомненно, явилась результатом многочисленных исследований, которые для нас остались совершенно не известны. Мы можем только гадать о её корнях и изумляться богатству и красоте её методов и результатов.

«Арифметика» Диофанта - это сборник задач (их всего 189), каждая из которых снабжена решением (или несколькими способами решения) и необходимыми пояснениями. Поэтому с первого взгляда кажется, что она не является теоретическим произведением. Однако при внимательном чтении видно, что задачи тщательно подобраны и служат для иллюстрации вполне определённых, строго продуманных методов. Как это было принято в древности, методы не формулируются в общем виде, а повторяются для решения однотипных задач.

2. Числа и символы

Диофант начинает с основных определений и описания буквенных символов, которые он будет применять.

В классической греческой математике, которая нашла своё завершение в «Началах» Евклида, под числом άριJμός - «аритмос » или «арифмос »; отсюда название «арифметика» для науки о числах) понималось множество единиц, т.е. целое число. Ни дроби, ни иррациональности числами не назывались. Строго говоря, никаких дробей в «Началах» нет. Единица считается неделимой и вместо долей единицы рассматриваются отношения целых чисел; иррациональности появляются как отношения несоизмеримых отрезков, например, число, которое мы теперь обозначаем √2, для греков классической эпохи было отношением диагонали квадрата к его стороне. Об отрицательных числах не было и речи. Для них не существовало даже никаких эквивалентов. Совершенно иную картину мы находим у Диофанта.

Диофант приводит традиционное определение числа как множества единиц, однако в дальнейшем ищет для своих задач положительные рациональные решения, причём называет каждое такое решение числом (άριJμός - «аритмос »).

Но этим дело не ограничивается. Диофант вводит отрицательные числа: он называет их специальным термином λει̃ψις - «лейпсис » - производное от глагола λει̃πω - «лейпо », что означает недоставать, нехватать, так что сам термин можно было бы перевести словом «недостаток». Кстати, так поступает известный русский историк науки И. Тимченко. Положительное число Диофант называет словом ΰπαρξις - «ипарксис », что означает существование, бытие, а во множественном числе это слово может означать имущество или достояние. Таким образом, терминология Диофанта для относительных чисел близка к той, которую употребляли в Средние века на Востоке и в Европе. Скорее всего, это было просто переводом с греческого на арабский, санскрит, латынь, а затем на различные языки Европы.

Заметим, что термин λει̃ψις - «лейпсис » - нельзя переводить как «вычитаемое», как это делают многие переводчики Диофанта, потому что для операции вычитания Диофант применяет совершенно иные термины, а именно άφελει̃ν - «афелейн » или άφαιρει̃ν - «афайрейн », которые являются производными от глагола άφαιρεω - «афайрео » - отнимать. Сам Диофант при преобразовании уравнений часто употребляет стандартное выражение «прибавим к обеим сторонам λει̃ψις».

Мы так подробно остановились на филологическом анализе текста Диофанта, чтобы убедить читателя, что мы не отступим от истины, если будем переводить термины Диофанта как «положительное» и «отрицательное».

Диофант формулирует для относительных чисел правило знаков:

«отрицательное, умноженное на отрицательное, даёт положительное, тогда как отрицательное на положительное даёт отрицательное, и отличительный знак для отрицательного есть - перевёрнутая и укороченная (буква) ψ».

«После того как я тебе объяснил умножение, становится ясным и деление предложенных членов; теперь будет хорошо приступить к упражнениям над сложением, вычитанием и умножением таких членов. И положительные и отрицательные члены с различными коэффициентами прибавлять к другим членам, которые либо положительны, либо, равным образом, и положительны и отрицательны, и от положительных членов и других отрицательных отнимать другие положительные и, равным образом, положительные и отрицательные».

Заметим, что хотя Диофант ищет только рациональные положительные решения, в промежуточных выкладках он охотно пользуется отрицательными числами.

Мы можем, таким образом, отметить, что Диофант расширил числовую область до поля рациональных чисел, в котором можно беспрепятственно производить все четыре действия арифметики.

3. Диофантово уравнение

Определение - алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, имеющие число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или рациональные решения.

ax + by = 1

где а и b - целые взаимно простые числа

Взаимно простые числа, несколько целых чисел, таких, что общими делителями для всех этих чисел являются лишь + 1 и - 1. Наименьшее кратное попарно простых чисел равно их произведению.

имеет бесконечно много решений:

если x0 и у0 - одно решение, то числа

х = x0 + bn

у = y0 -an

(n - любое целое число) тоже будут решениями.

Другой пример Д. у.

x2 + у2 = z2

Целые положительные решения этого уравнения представляют длины катетов х , у и гипотенузы z прямоугольных треугольников с целочисленными длинами сторон и называются пифагоровыми числами.

тройки натуральных чисел таких, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным.

Все тройки взаимно простых пифагоровых чисел можно получить по формулам

х = m2 - n2

у = 2mn

z = m2 + n2

где m и n - целые числа (m > n > 0).

Это уравнение определяет на плоскости R 2 алгебраическую кривую Γ. Рациональное решение (2) будем называть рациональной точкой кривой Γ. В дальнейшем мы часто будем прибегать к языку геометрии, хотя сам Диофант нигде его не применяет. Однако геометрический язык стал в настоящее время столь неотъемлемой частью математического мышления, что многие факты будет легче понять и объяснить с его помощью.

Прежде всего, необходимо дать какую-нибудь классификацию уравнений (2) или, что тоже, алгебраических кривых. Наиболее естественной и ранее всего возникшей является классификация их по порядкам.

Напомним, что порядком кривой (2) называется максимальный порядок членов многочлена f (x , y ), где под порядком члена понимается сумма степеней при x и y . Геометрический смысл этого понятия заключается в том, что прямая пересекается с кривой порядка n ровно в n точках. При подсчёте точек надо, разумеется, учитывать кратность точек пересечения, а также комплексные и «бесконечно удалённые» точки. Так, например, окружность x 2 + y 2 = 1 и прямая x + y = 2 пересекаются в двух комплексных точках, а гипербола x 2 – y 2 = 1 и прямая y =x - в двух бесконечно удалённых точках, та же гипербола с прямой x =1 имеет одну общую точку кратности 2.

Однако для целей диофантова анализа (такое название получила область математики, выросшая из задач решения неопределённых уравнений; впрочем, теперь её чаще называют диофантовой геометрией) классификация по порядкам оказалась слишком грубой.


Рис. 1.

Поясним сказанное на примере. Пусть задана окружность C : x 2 + y 2 = 1 и любая прямая с рациональными коэффициентами, например, L : y =0. Покажем, что рациональные точки этой окружности и прямой можно поставить во взаимно однозначное соответствие. Это можно сделать, например, так: закрепим точку A (0,–1) окружности и поставим в соответствие каждой рациональной точке B прямой L точку B" окружности C , лежащую на пересечении C и прямой AB (рис. 1). То, что координаты точки B" будут рациональными, предоставим читателю доказать самому либо прочесть аналогичное доказательство у Диофанта (оно будет изложено в следующем параграфе). Очевидно, что такое же соответствие можно установить между рациональными точками любого конического сечения, если на нём лежит хотя бы одна рациональная точка, и рациональной прямой. Мы видим, что с точки зрения диофантова анализа окружность C и прямая L неотличимы: множества их рациональных решений эквивалентны. И это несмотря на то, что порядки обеих кривых различны.

Более тонкой является классификация алгебраических кривых по родам, которая была введена только в XIX веке Абелем и Риманом. Эта классификация учитывает число особых точек кривой Γ.

Будем считать, что в уравнении (2) кривой Γ многочлен f (x , y ) неприводим над полем рациональных чисел, т.е. он не раскладывается в произведение многочленов с рациональными коэффициентами. Как известно, уравнение касательной к кривой Γ в точке P (x 0 , y 0) будет

y y 0 = k (x x 0),

k = –

f x " (x 0 , y 0)

f y " (x 0 , y 0)

Если в точке P производная f x " или f y " отлична от нуля, то угловой коэффициент k касательной имеет вполне определённое значение (если f y " (x 0 , y 0) = 0, a f x " (x 0 , y 0) ≠ 0, то k =∞ и касательная в P будет вертикальной).

Если же в точке P обе частные производные обращаются в нуль,

f x " (x 0 , y 0) = 0 и f y " (x 0 , y 0) = 0,

то точка P называется особой .

Например, у кривой y 2 = x 2 + x 3 точка (0, 0) будет особой, так как в ней f x " = –2x – 3x 2 и f y " = 2y обращаются в нуль.


Рис. 2.

Наиболее простыми особыми точками являются двойные, в которых хотя бы одна из производных f xx "" , f xy "" и f yy "" отлична от нуля. На рис. 2 изображена двойная точка, в которой кривая имеет две различные касательные. Другие более сложные особые точки изображены на рис. 3.


Рис. 3.

4. Способы решения

Правило 1. Если с не делится на d, то уравнение ах + ву = с не имеет решений в целых числах. Н.О.Д.(а,в) = d.

Правило 2. Чтобы найти решение уравнения ах + ву = с при взаимно-простых а и в, нужно сначала найти решение (Х о; у о) уравнения ах + ву = 1; числа СХ о, Су о составляют решение уравнения ах + ву = с.

Решить в целых числах (х,у) уравнение

5х - 8у = 19 … (1)

Первый способ. Нахождение частного решения методом подбора и запись общего решения.

Знаем, что если Н.О.Д.(а;в) =1, т.е. а и в взаимно-простые числа, то уравнение (1)

имеет решение в целых числах х и у. Н.О.Д.(5;8) =1. Методом подбора находим частное решение: Х о = 7; у о =2.

Итак, пара чисел (7;2) - частное решение уравнения (1).

Значит, выполняется равенство: 5 x 7 – 8 x 2 = 19 … (2)

Вопрос: Как, имея одно решение, записать все остальные решения?

Вычтем из уравнения (1) равенство (2) и получим: 5(х -7) – 8(у - 2) =0.

Отсюда х – 7 = . Из полученного равенства видно, что число (х – 7) будет целым тогда и только тогда, когда (у – 2) делится на 5, т.е. у – 2 = 5n, где n какое-нибудь целое число. Итак, у = 2 + 5n, х = 7 + 8n, где n Z.

Тем самым все целые решения исходного уравнения можно записать в таком виде:

Второй способ . Решение уравнения относительно одного неизвестного.

Решаем это уравнение относительно того из неизвестных, при котором наименьший (по модулю) коэффициент. 5х - 8у = 19 х = .

Остатки при делении на 5: 0,1,2,3,4. Подставим вместо у эти числа.

Если у = 0, то х = =.

Если у =1, то х = =.

Если у = 2, то х = = = 7 Z.

Если у =3, то х = =.

Если у = 4 то х = =.) Заключение

Между тем большинство историков науки, в противоположность математикам, до сих пор недооценивали труды Диофанта. Многие из них считали, что Диофант ограничивался нахождением только одного решения и применял для этого искусственные приёмы, различные для разных задач. Но на самом деле в большинстве диофантовых уравнений мы наблюдаем похожие алгоритмы решений.

Сегодня, как мы видим, существует несколько различных способов решения, алгоритмы которых несложно запомнить. Как уже было сказано ранее это уравнение обычно встречается в задании С6 на ЕГЭ. Исследование алгоритмов решения Диофантовых уравнений может помочь при решении этого задания, которое оценивается в значительное количество баллов.

Список литературы

1.Диофант Александрийский. Арифметика и книга о многоугольных числах (перевод с древнегреческого И. Н. Веселовского; редакция и комментарии И. Г. Башмаковой). М., «Наука», 1974.

2. Б. Л. Ван-дер-Варден, Пробуждающаяся наука (перевод И. Н. Веселовского). М., Физматгиз, 1959.

3. Г. Г. Цейтен, История математики в древности и в средние века (перевод П. Юшкевича). М.–Л., Гостехиздат, 1932

4. А. В. Васильев, Целое число. Петербург, 1919

5. И. В. Ященко, С. А. Шестаков, П. И. Захаров, Математика, ЕГЭ, МЦНМО, 2010

Диофа́нт Александри́йский (др.-греч. Διόφαντος ὁ Ἀλεξανδρεύς ; лат. Diophantus ) - древнегреческий математик , живший предположительно в III веке н. э. Нередко упоминается как «отец алгебры ». Автор «Арифметики» - книги, посвящённой нахождению положительных рациональных решений неопределённых уравнений . В наше время под «диофантовыми уравнениями» обычно понимают уравнения с целыми коэффициентами, решения которых требуется найти среди целых чисел.

Биография [ | ]

Латинский перевод Арифметики (1621)

О подробностях его жизни практически ничего не известно. С одной стороны, Диофант цитирует Гипсикла (II век до н. э.); с другой стороны, о Диофанте пишет Теон Александрийский (около 350 года н. э.), - откуда можно сделать вывод, что его жизнь протекала в границах этого периода. Возможное уточнение времени жизни Диофанта основано на том, что его Арифметика посвящена «достопочтеннейшему Дионисию». Полагают, что этот Дионисий - никто иной, как епископ Дионисий Александрийский , живший в середине III в. н. э.

Она эквивалентна решению следующего уравнения:

x = x 6 + x 12 + x 7 + 5 + x 2 + 4 {\displaystyle x={\frac {x}{6}}+{\frac {x}{12}}+{\frac {x}{7}}+5+{\frac {x}{2}}+4}

Это уравнение даёт x = 84 {\displaystyle x=84} , то есть возраст Диофанта получается равным 84 годам. Однако достоверность сведений не может быть подтверждена.

Арифметика Диофанта [ | ]

Основное произведение Диофанта - Арифметика в 13 книгах. К сожалению, сохранились только 6 (или 10, см. ниже) первых книг из 13.

Первая книга предварена обширным введением, в котором описаны используемые Диофантом обозначения. Неизвестную Диофант называет «числом» (ἀριθμός ) и обозначает буквой ς , квадрат неизвестной - символом Δ Υ (сокращение от δύναμις - «степень»), куб неизвестной - символом Κ Υ (сокращение от κύβος - «куб»). Предусмотрены специальные знаки для следующих степеней неизвестного, вплоть до шестой, называемой кубо-кубом, и для противоположных им степеней, вплоть до минус шестой.

Знака сложения у Диофанта нет: он просто пишет рядом положительные члены в порядке убывания степени, причём в каждом члене сначала записывается степень неизвестного, а затем численный коэффициент. Вычитаемые члены также записываются рядом, а перед всей их группой ставится специальный знак в виде перевёрнутой буквы Ψ. Знак равенства обозначается двумя буквами ἴσ (сокращение от ἴσος - «равный»).

Сформулированы правило приведения подобных членов и правило прибавления или вычитания к обеим частям уравнения одного и того же числа или выражения: то, что потом у ал-Хорезми стало называться «алгеброй и алмукабалой». Введено правило знаков: «минус на плюс даёт минус», «минус на минус даёт плюс»; это правило используется при перемножении двух выражений с вычитаемыми членами. Всё это формулируется в общем виде, без отсылки к геометрическим истолкованиям.

Бо́льшая часть труда - это сборник задач с решениями (в сохранившихся шести книгах их всего 189, вместе с четырьмя из арабской части - 290), умело подобранных для иллюстрации общих методов. Главная проблематика Арифметики - нахождение положительных рациональных решений неопределённых уравнений . Рациональные числа трактуются Диофантом так же, как и натуральные , что не типично для античных математиков.

Сначала Диофант исследует системы уравнений второго порядка от двух неизвестных; он указывает метод нахождения других решений, если одно уже известно. Затем аналогичные методы он применяет к уравнениям высших степеней. В VI книге исследуются задачи, относящиеся к прямоугольным треугольникам с рациональными сторонами.

Влияние Арифметики на развитие математики [ | ]

В X веке Арифметика была переведена на арабский язык, после чего математики стран ислама (Абу Камил и др.) продолжили некоторые исследования Диофанта. В Европе интерес к Арифметике возрос после того, как Рафаэль Бомбелли перевёл и опубликовал это сочинение на латинский язык, и опубликовал 143 задачи из него в своей Алгебре (1572). В 1621 году появился классический, подробно прокомментированный латинский перевод Арифметики , выполненный Баше де Мезириаком .

Методы Диофанта оказали огромное влияние на Франсуа Виета и Пьера Ферма ; впрочем, в Новое время неопределённые уравнения обычно решаются в целых числах, а не в рациональных, как это делал Диофант. Когда Пьер Ферма читал «Арифметику» Диофанта, изданную Баше де Мезириаком , он пришёл к выводу, что одно из уравнений, похожих на рассмотренные Диофантом, не имеет решений в целых числах, и заметил на полях, что он нашёл «поистине чудесное доказательство этой теоремы… однако поля книги слишком узки, чтобы его привести». Сейчас это утверждение известно как Великая теорема Ферма .

В XX веке под именем Диофанта обнаружен арабский текст ещё четырёх книг Арифметики . И. Г. Башмакова и Е. И. Славутин, проанализировав этот текст, выдвинули гипотезу, что его автором был не Диофант, а хорошо разбиравшийся в методах Диофанта комментатор, вероятнее всего - Гипатия . Однако существенный разрыв в методике решений задач первых трёх и последних трёх книг хорошо заполняется четырьмя книгами арабского перевода. Это заставляет пересмотреть результаты предыдущих исследований. . [ ]

Другие сочинения Диофанта [ | ]

Трактат Диофанта О многоугольных числах (Περὶ πολυγώνων ἀριθμῶν ) сохранился не полностью; в сохранившейся части методами геометрической алгебры выводится ряд вспомогательных теорем.

Из сочинений Диофанта Об измерении поверхностей (ἐπιπεδομετρικά ) и Об умножении (Περὶ πολλαπλασιασμοῦ ) также сохранились лишь отрывки.

Книга Диофанта Поризмы известна только по нескольким теоремам, используемым в Арифметике .

Профессиональный праздник российских рыбаков - День рыбака , отмечается ежегодно во второе воскресенье июля . Это праздник как рыбаков-любителей, так и людей, для кого данное занятие является профессией: рыболовов-промысловиков, приемщиков, обработчиков, погрузчиков, перевозчиков водных биоресурсов, экипажей рыболовецких судов.

Число празднования утверждено Указом Президиума ВС СССР в 1965 году. В 2020 году проф. празднику исполняется 55 лет. Поскольку дата юбилейная, отмечать ее следует с особым размахом.

В отличие от российской даты, Всемирный день рыболова отмечают 27 июня, в 2020 году - в субботу 27 июня 2020 года .

На сегодняшний день рыбная ловля является одним из самых распространенных развлечений в мире.

В России День Крещения Руси был внесен в число официальных памятных дат с 13 июня 2010 года.

Начнётся салют в 22:30 и продлится 10 минут .

В вечернее небо Петербурга будет запущено 30 залпов из артиллерийских орудий и более 2000 фейерверков.

Откуда лучше смотреть салют и фейерверк в день ВМФ 28 июля 2019 года:

Для проведения праздничного салюта и фейерверка 28 июля 2019 года будет организовано 2 площадки. Первая разместится на Большом пляже Петропавловской крепости, а вторая - в Кронштадте.

Залпы салюта в День ВМФ 2019 будет видно из разных районов города. Однако, наблюдать за салютом лучше всего с безопасного расстояния как можно ближе к местам запуска. Для просмотра лучше заранее занять место на Дворцовой набережной, стрелке Васильевского острова, на одном из мостов (Дворцовом, Литейном, Биржевом, Троицком) .

Отлично виден салют, посвященный Дню ВМФ 2019, будет с акватории Невы . Для этого необходимо заранее арендовать место на "плавсредстве", что обойдется в полторы-две тысячи рублей с человека.

На протяжении 10 минут 30 залпов произведет батарея из 12 орудий Д-44, а две тысячи фейерверков будет запущено с помощью 12 фейерверочных установок на базе КамАЗа.

Военно-спортивные праздники в честь Дня ВМФ, пройдут в 7 городах России: Астрахани, Владивостоке, Балтийске, Североморске, Севастополе, Новороссийске и, конечно же, в Санкт-Петербурге .

Также в Северной столице России будет проведён военно-морской парад , в котором примут участие более 40 кораблей, катеров и подводных лодок, а также 41 воздушное судно.

Время начала парада кораблей ВМФ в СПб 28 июля 2019 года - 11:00 (время местное/московское).

На каком канале смотреть прямую трансляцию парада ВМФ в Питере:

Военно-морской парад 28 июля 2019 года в прямом эфире покажет Первый канал . Для подготовки красочной трансляции этого грандиозного зрелища будет задействовано около 100 телекамер, которые расположены в воде, на кораблях, на земле, в небе (на самолетах), и даже под водой.

То есть, парад ВМФ 2019 в Санкт-Петербурге:
* Время начала - 11:00.
* Прямая трансляция - на Первом канале.

В военно-морском параде, посвященном празднованию Дню ВМФ 2019 года, примут участие самые крупные, мощные и красивые корабли Балтийского, Черноморского, Северного и Тихоокеанского флотов. Для осуществления праздничного прохода они заранее прибыли в город на Неве. Во главе парада 28 июля 2019 года проследует Великолепный парусник "Полтава", который является точной копией исторического линейного 54-пушечного корабля Петровской эпохи. А в авиационном шоу в едином строю пролетят более 40 современных самолетов и вертолетов морской авиации.

». Автор «Арифметики» - книги, посвящённой нахождению положительных рациональных решений неопределённых уравнений . В наше время под «диофантовыми уравнениями» обычно понимают уравнения с целыми коэффициентами, решения которых требуется найти среди целых чисел.

Она эквивалентна решению следующего уравнения:

x = x 6 + x 12 + x 7 + 5 + x 2 + 4 {\displaystyle x={\frac {x}{6}}+{\frac {x}{12}}+{\frac {x}{7}}+5+{\frac {x}{2}}+4}

Это уравнение даёт x = 84 {\displaystyle x=84} , то есть возраст Диофанта получается равным 84 годам. Однако достоверность сведений не может быть подтверждена.

Арифметика Диофанта

Основное произведение Диофанта - Арифметика в 13 книгах. К сожалению, сохранились только 6 первых книг из 13.

Первая книга предварена обширным введением, в котором описаны используемые Диофантом обозначения. Неизвестную Диофант называет «числом» (ἀριθμός ) и обозначает буквой ς , квадрат неизвестной - символом Δ Υ (сокращение от δύναμις - «степень»), куб неизвестной - символом Κ Υ (сокращение от κύβος - «куб»). Предусмотрены специальные знаки для следующих степеней неизвестного, вплоть до шестой, называемой кубо-кубом, и для противоположных им степеней, вплоть до минус шестой.

Знака сложения у Диофанта нет: он просто пишет рядом положительные члены в порядке убывания степени, причём в каждом члене сначала записывается степень неизвестного, а затем численный коэффициент. Вычитаемые члены также записываются рядом, а перед всей их группой ставится специальный знак в виде перевёрнутой буквы Ψ. Знак равенства обозначается двумя буквами ἴσ (сокращение от ἴσος - «равный»).

Сформулированы правило приведения подобных членов и правило прибавления или вычитания к обеим частям уравнения одного и того же числа или выражения: то, что потом у ал-Хорезми стало называться «алгеброй и алмукабалой». Введено правило знаков: «минус на плюс даёт минус», «минус на минус даёт плюс»; это правило используется при перемножении двух выражений с вычитаемыми членами. Всё это формулируется в общем виде, без отсылки к геометрическим истолкованиям.

Бо́льшая часть труда - это сборник задач с решениями (в сохранившихся шести книгах их всего 189), умело подобранных для иллюстрации общих методов. Главная проблематика Арифметики - нахождение положительных рациональных решений неопределённых уравнений . Рациональные числа трактуются Диофантом так же, как и натуральные , что не типично для античных математиков.

Сначала Диофант исследует системы уравнений второго порядка от двух неизвестных; он указывает метод нахождения других решений, если одно уже известно. Затем аналогичные методы он применяет к уравнениям высших степеней. В VI книге исследуются задачи, относящиеся к прямоугольным треугольникам с рациональными сторонами.

Влияние Арифметики на развитие математики

В X веке Арифметика была переведена на арабский язык, после чего математики стран ислама (Абу Камил и др.) продолжили некоторые исследования Диофанта. В Европе интерес к Арифметике возрос после того, как Рафаэль Бомбелли обнаружил это сочинение в Ватиканской библиотеке и опубликовал 143 задачи из него в своей Алгебре (). В 1621 году появился классический, подробно прокомментированный латинский перевод Арифметики , выполненный Баше де Мезириаком .

Методы Диофанта оказали огромное влияние на Франсуа Виета и Пьера Ферма ; впрочем, в Новое время неопределённые уравнения обычно решаются в целых числах, а не в рациональных, как это делал Диофант. Когда Пьер Ферма читал «Арифметику» Диофанта, изданную Баше де Мезириаком , он пришёл к выводу, что одно из уравнений, похожих на рассмотренные Диофантом, не имеет решений в целых числах, и заметил на полях, что он нашёл «поистине чудесное доказательство этой теоремы… однако поля книги слишком узки, чтобы его привести». Сейчас это утверждение известно как Великая теорема Ферма .

В XX веке под именем Диофанта обнаружен арабский текст ещё четырёх книг Арифметики . И. Г. Башмакова и Е. И. Славутин, проанализировав этот текст, выдвинули гипотезу, что его автором был не Диофант, а хорошо разбиравшийся в методах Диофанта комментатор, вероятнее всего - Гипатия .

Другие сочинения Диофанта

. М., Наука, 1970.
  • Башмакова И. Г. Диофант и диофантовы уравнения. М.: Наука, 1972 (Репринт М.: ЛКИ, 2007)
  • Славутин Е. И. Алгебра Диофанта и её истоки. , 20, 1975, с. 63-103.
  • Башмакова И. Г. Арифметика алгебраических кривых (от Диофанта до Пуанкаре). Историко-математические исследования , 20, 1975, с. 104-124.
  • Башмакова И. Г., Славутин Е. И., Розенфельд Б. А. Арабская версия «Арифметики» Диофанта. Историко-математические исследования , 23, 1978, с. 192-225.
  • Башмакова И. Г., Славутин Е. И. История диофантова анализа от Диофанта до Ферма. М.: Наука, 1984.
  • Щётников А. И. Можно ли назвать книгу Диофанта Александрийского «О многоугольных числах» чисто алгебраической? Историко-математические исследования , 8(43), 2003, с. 267-277.
  • Heath Th. L. Diophantus of Alexandria, A Study in the History of Greek Algebra . Cambridge, 1910 (Repr. NY, 1964).
  • Knorr W. R. Arithmktikê stoicheiôsis: On Diophantus and Hero of Alexandria. Historia Mathematica , 20, 1993, p. 180-192.
  • Christianidis J. The way of Diophantus: Some clarifications on Diophantus’ method of solution. Historia Mathematica , 34, 2007, p. 289-305.
  • Rashed R., Houzel C. Les Arithmétiques de Diophante. Lecture historique et mathématique. De Gruyter, 2013.