Open
Close

Оптическая изомерия. Оптические изомеры

II.1. Конформации (поворотная изомерия)

Переход от простейшего органического углеводорода - метана, к его ближайшему гомологу - этану ставит проблемы пространственного строения, для решения которых недостаточно знать рассмотренные в разделе параметры. В самом деле, не меняя ни валентных углов, ни длин связей, можно представить себе множество геометрических форм молекулы этана, отличающихся друг от друга взаимным поворотом углеродных тетраэдров вокруг соединяющей их связи С-С. В результате такого вращения возникают поворотные изомеры (конформеры) . Энергия различных конформеров неодинакова, но энергетический барьер, разделяющий различные поворотные изомеры, для большинства органических соединений невелик. Поэтому при обычных условиях, как правило, нельзя зафиксировать молекулы в одной строго определенной конформации: обычно в равновесии сосуществуют несколько легко переходящих друг в друга поворотных форм.

Способы графического изображения конформаций и их номенклатура таковы. Рассмотрение начнем с молекулы этана. Для нее можно предвидеть существоввание двух максимально различающихся по энергии конформаций. Они изображены ниже в виде перспективных проекций (1) ("лесопильные козлы"), боковых проекций (2) и формул Ньюмена (3).

В перспективной проекции (1а, 1б) связь С-С надо представить себе уходящей вдаль; стоящий слева углеродный атом приближен к наблюдателю, стоящий справа - удален от него.

В боковой проекции (2а, 2б) четыре Н-атома лежат в плоскости чертежа; атомы углерода на самом деле несколько выходят из этой плоскости, но обычно упрощенно считают их также лежащими в плоскости чертежа. "Жирные" клиновидные связи утолщением клина показывают на выход из плоскости по направлению к наблюдателю того атома, к которому обращено утолщение. Пунктирные клиновидные связи отмечают удаление от наблюдателя.

В проекции Ньюмена (3а, 3б) молекулу рассматривают вдоль связи С-С (в направлении, указанном стрелкой на формулах 1а,б). Три линии, расходящиеся под углом 120 о из центра круга, обозначают связи ближайшего к наблюдателю углеродного атома; линии, "высовывающиеся" из-за круга - связи удаленного углеродного атома.

Изображенную слева конформацию называют заслоненной : название это напоминает о том, что атомы водорода обеих СН 3 -групп находятся друг против друга. Заслоненная конформация имеет повышенную внутреннюю энергию, и поэтому невыгодна. Конформацию, изображенную справа, называют заторможенной , подразумевая, что свободное вращение вокруг связи С-С "тормозится" в этом положении, т.е. молекула существует преимущественно в этой конформации.

Минимум энергии, необходимый для полного вращения молекулы вокруг определенной связи называется барьером вращения для данной связи. Барьер вращения в молекуле, подобной этану, может быть выражен через изменение потенциальной энергии молекулы как функции изменения двугранного (торсионного) угла системы. Двугранный угол (обозначаемый тау) изображен на рисунке, приведенном ниже:

Энергетический профиль вращения вокруг связи С-С в этане показан на следующем рисунке. Вращение "заднего" атома углерода изображено изменением двугранного угла между двумя показанными атомами водорода. Для простоты остальные атомы водорода опущены. Барьер вращения, разделяющий две формы этана, составляет только 3 ккал/моль (12.6 кДж/моль). Минимумы кривой потенциальной энергии соответствуют заторможенным конформациям, максимумы - заслоненным. Поскольку при комнатной температуре энергия некоторых столкновений молекул может достигать 20 ккал/моль (около 80 кДж/моль), то этот барьер в 12.6 кДж/моль легко преодолевается и вращение в этане рассматривают как свободное.

Подчеркнем, что каждая точка на кривой потенциальной энергии соответствует определенной конформации. Точки, соответствующие минимумам, отвечают конформационным изомерам, то есть преобладающим компонентам в смеси всех возможных конформаций .

С усложнением молекулы число возможных заметно отличающихся по энергии конформаций возрастает. Так, для н -бутана можно изобразить уже шесть конформаций, отличающихся взаимным расположением СН 3 -групп, т.е. поворотом вокруг центральной связи С-С. Ниже конформации н-бутана изображены в виде проекций Ньюмена. Изображенные слева (заслоненные) конформации энергетически невыгодны, практически реализуются лишь заторможенные.

Различные заслоненные и заторможенные конформации бутана неодинаковы по энергии. Соответствующие энергии всех конформаций, обрпзующихся при вращении вокруг центральной С-С связи, представлены ниже:

По мере усложнения молекулы число возможных конфомаций возрастает.

Итак, конформации - это различные неидентичные пространственные формы молекулы, имеющие определенную конфигурацию. Конформеры - это стереоизомерные структуры, находящиеся в подвижном равновесии и способные к взаимопревращению путем вращения вокруг простых связей.

Иногда барьер таких превращений становится достаточно высоким, чтобы разделить стереоизомерные формы (пример - оптически активные дифенилы; ). В таких случаях говорят уже не о конформерах, а о реально существующих стереоизомерах .

II.2. Геометрическая изомерия

Важное следствие жесткости двойной связи (отсутствия вращения вокруг нее) - существование геометрических изомеров . Самые распространенные из них - это цис-транс-изомеры соединений этиленового ряда, содержащих у ненасыщенных атомов неодинаковые заместители. Простейшим примером могут служить изомеры бутена-2.

Геометрические изомеры имеют одинаковое химическое строение (одинаковый порядок химической связи), различаясь по пространственному расположению атомов, по конфигурации . Это различие и создает разницу в физических (а также химических свойствах). Геометрические изомеры, в отличие от конформеров, могут быть выделены в чистом виде и существуют как индивидуальные, устойчивые вещества. Для их взаимного превращения необходима обычно энергия порядка 125-170 кДж/моль (30-40 ккал/моль). Эту энергию можно сообщить нагреванием или облучением.

В простейших случаях номенклатура геометрических изомеров не представляет затруднений: цис- формами называют геометрические изомеры, у которых одинаковые заместители лежат по одну сторону от плоскости пи-связи, транс- изомеры имеют одинаковые заместители на разных сторонах от плоскости пи-связи. В более сложных случаях применяется Z,E-номенклатура . Ее главный принцип: для обозначения конфигурации указывают цис- (Z, от немецкого Zusammen - вместе) или транс- (Е, от немецкого Entgegen - напротив) расположение старших заместителей при двойной связи.

В Z,E-системе старшими считаются заместители с большим атомным номером. Если атомы, непосредственно связанные с ненасыщенными углеродами, одинаковы, то переходят ко "второму слою", в случае необходимости - к "третьему слою" и т.д.

Рассмотрим применение правил Z,E-номенклатуры на двух примерах.

I II

Начнем с формулы I, где все решается атомами "первого слоя". Расставив их атомные номера, получим, что старшие заместители каждой пары (бром в верхней части формулы и азот в нижней) находятся в транс -положении, отсюда следует стереохимические обозначение Е:

Е-1-бром-1-хлор-2-нитроэтен

Для определения стереохимического обозначения структуры II необходимо искать различие в "высших слоях". По первому слою группы СН 3 , С 2 Н 5 , С 3 Н 7 не отличаются. Во втором слое у группы СН 3 сумма атомных номеров равна трем (три атома водорода), у групп С 2 Н 5 и С 3 Н 7 - по 8. Значит, группа СН 3 не рассматривается - она младше двух других. Таким образом, старшие группы - это С 2 Н 5 и С 3 Н 7 , он находятся в цис -положении; стереохимические обозначение Z.

Z-3-метилгептен-3

Если бы понадобилось определить, какая группа старше - С 2 Н 5 или С 3 Н 7 , пришлось бы перейти к атомам "третьего слоя", сумма атомных номеров в этом слое для обеих групп оказались бы соответственно равными 3 и 8, т.е. С 3 Н 7 старше, чем С 2 Н 5 . В более сложных случаях определения старшинства надо учитывать дополнительные условия, как-то: атом, связанный двойной связью, считается дважды, связанный тройной - трижды; из числа изотопов старше более тяжелый (дейтерий старше водорода) и некоторые другие.

Отметим, что обозначения Z не является синонимами цис- обозначений, как и обозначения Е не всегда соответствуют расположению транс- , например:

цис- 1,2-дихлорпропен-1 цис- 1,2-дихлор-1-бромпропен-1

Z-1,2-дихлорпропен-1 Е-1,2-дихлор-1-бромпропен-1

Контрольные задачи

1. Бомбикол - феромон (половой аттрактант) тутового шелкопряда - представляет собой E-10-Z-12-гексадекадиенол-1. Изобразите его структурную формулу.

2. Назовите по Z,E-номенклатуре следующие соединения:

II.3. Оптическая изомерия (энантиомерия)

Среди органических соединений встречаются вещества, способные вращать плоскость поляризаации света. Это явление называют оптической активностью, а соответствующие вещества - оптически активными . Оптически активные вещества встречаются в виде пар оптических антиподов - изомеров, физические и химические свойства которых в обычных условиях одинаковы, за исключением одного - знака вращения плоскости поляризации. (Если один из оптических антиподов имеет, например, удельное вращение [ПРИМ.1] +20 о, то другой - удельное вращение -20 о).

II.4. Проекционные формулы

Для условного изображения асимметрического атома на плоскости пользуются проекционными формулами Э.Фишера . Их получают, проецируя на плоскость атомы, с которыми связан асимметрический атом. При этом сам асимметрический атом, как правило, опускают, сохраняя лишь перекрещивающиеся линии и символы заместителей. Чтобы помнить о пространственном расположении заместителей, часто сохраняют в проекционных формулах прерывистую вертикальную линию (верхний и нижний заместитель удалены за плоскость чертежа), однако часто этого не делают. Ниже приведены различные способы записи проекционной формулы, отвечающей левой модели на предыдущем рисунке:

Приведем несколько примеров проекционных формул:

(+)-аланин (-)-бутанол (+)-глицериновый альдегид

При названиях веществ приведены их знаки вращения: это значит, например, что левовращающий антипод бутанола-2 имеет пространственную конфигурацию , выражаемую именно приведенной выше формулой, а ее зеркальное изображение отвечает правовращающему бутанолу-2. Определение конфигурации оптических антиподов проводится экспериментально [ПРИМ.3] .

В принципе, каждый оптический антипод может быть изображен двенадцатью (!) различными проекционными формулами - в зависимости от того, как расположена модель при проекции, с какой стороны мы смотрим на нее. Чтобы стандартизировать проекционные формулы, введены определенные правила их написания. Так, главную функцию, если она стоит в конце цепи, принято ставить наверху, главную цепь изображать вертикально.

Для того, чтобы сопоставлять "нестандартно" написанные проекционные формулы, надо знать следующие правила преобразования проекционных формул.

1. Формулы можно вращать в плоскости чертежа на 180 о, не меняя их стереохимического смысла:

2. Две (или любое четное число) перестановки заместителей у одного асимметрического атома не меняют стереохимического смысла формулы:

3. Одна (или любое нечетное число) перестановок заместителей у асимметрического центра приводит к формуле оптического антипода:

4. Поворот в плоскости чертежа на 90 о превращает формулу в антиподную, если только при этом одновременно не изменить условие расположения заместителей относительно плоскости чертежа, т.е. не считать, что теперь боковые заместители находятся за плоскостью чертежа, а верхний и нижний - перед ней. Если пользоваться формулой с пунктиром, то изменившаяся ориентация пунктира прямо напомнит об этом:

5. Вместо перестановок проекционные формулы можно преобразовывать путем вращения любых трех заместителей по часовой стрелке или против нее; четвертый заместитель при этом положения не меняет (такая операция эквивалентна двум перестановкам):

6. Проекционные формулы нельзя выводить из плоскости чертежа (т.е. нельзя, например, рассматривать их "на просвет" с обратной стороны бумаги - при этом стереохимический смысл формулы изменится).

II.5. Рацематы

Если в формуле вещества есть асимметрический атом, это отнюдь не означает, что такое вещество будет обладать оптической активностью. Если асимметрический центр возникает в ходе обычной реакции (замещение в группе СН 2 , присоединение по двойной связи и т.п.), то вероятность создания обеих антиподных конфигураций одинакова. Поэтому, несмотря на асимметрию каждой отдельной молекулы, получающееся вещество оказывается оптически неактивным. Такого рода оптически неактивные модификации, состоящие из равного количества обоих антиподов, называются рацематами [ПРИМ.4] .

II.6. Диастереомерия

Соединения с несколькими асимметрическими атомами обладают важными особенностями, отличающими их от рассмотренных ранее более простых оптически активных веществ с одним центром асимметрии.

Допустим, что в молекуле некоего вещества имеются два асимметрических атома; обозначим их условно А и Б. Легко видеть, что возможны молекулы со следующими комбинациями:

Молекулы 1 и 2 представляют собой пару оптических антиподов; то же самое относится и к паре молекул 3 и 4. Если же сравнивать друг с другом молекулы из разных пар антиподов - 1 и 3, 1 и 4, 2 и 3, 2 и 4, то мы увидим, что перечисленные пары не являются оптическими антиподами: конфигурация одного асимметрического атома у них совпадает, конфигурация другого - не совпадает. Все это пары диастереомеров , т.е. пространственных изомеров, не составляющих друг с другом оптических антиподов.

Диастереомеры отличаются друг от друга не только оптическим вращением, но и всеми другими физическими константами: у них разные температуры плавления и кипения, разные растворимости и др. Различия в свойствах диастереомеров зачастую ничуть не меньше, чем различия в свойствах между структурными изомерами.

Примером соединения рассматриваемого типа может случить хлоряблочная кислота

Ее стереоизомерные формы имеют следующие проекционные формулы:

эритро- формы трео- формы

Названия эритро - и трео - происходят от названий углеводов эритрозы и треозы. Эти названия употребляют для указания взаимного положения заместителей у соединений с двумя асимметрическими атомами: эритро -изомерами называют те, у которых два одинаковых боковых заместителя стоят в стандартной проекционной формуле на одной стороне (справа или слева); трео -изомеры имеют одинаковые боковые заместители на разных сторонах проекционной формулы [ПРИМ.5] .

Два эритро- изомера представляют собой пару оптических антиподов, при их смешении образуется рацемат. Парой оптических изомеров являются и трео- формы; они тоже дают при смешении рацемат, отличающийся по свойствам от рацемата эритро- формы. Таким образом, всего существуют четыре оптически активных изомера хлоряблочной кислоты и два рацемата.

При дальнейшем росте числа асимметрических центров число пространственных изомеров возрастает, причем каждый новый асимметрический центр вдвое увеличивает число изомеров. Оно определяется формулой 2 n , где n - число асимметрических центров.

Число стереоизомеров может уменьшаться из-за частичной симметрии, появляющейся в некоторых структурах. Примером может служить винная кислота, у которой число индивидуальных стереоизомеров сокращается до трех. Их проекционные формулы:

Формула I идентична с формулой Iа: превращается в нее при повороте на 180 о в плоскости чертежа и, следовательно, не изображает нового стереоизомера. Это оптически неактивная модификация - мезо-форма . В отличие от рацемата, который может быть расщеплен на оптические антиподы , мезо- форма принципиально нерасщепляема: каждая ее молекула имеет один асимметрический центр одной конфигурациии, второй - противоположной. В итоге происходит внутримолекулярная компенсация вращения обоих асимметрических центров.

Мезо- формы имеются у всех оптически активных веществ с несколькими одинаковыми (т.е. связанными с одинаковыми заместителями) асимметрическими центрами [ПРИМ.6] . Проекционные формулы мезо- форм всегда можно узнать по тому, что их всегда можно разделить горизонтальной линией на две половины, которые по записи на бумаге формально идентичны, в действительности же зеркальны:

Формулы II и III изображают оптические антиподы винной кислоты; при их смешении образуется оптически неактивный рацемат - виноградная кислота.

II.7. Номенклатура оптических изомеров

Самая простая, наиболее старая, однако и ныне еще употребляемая система номенклатуры оптических антиподов основана на сравнении проекционной формулы называемого антипода с проекционной формулой некоего стандартного вещества, выбранного в качестве "ключа". Так, для альфа-оксикислот и альфа -аминокислот ключом является верхняя часть их проекционной формулы (в стандартной записи):

L- оксикислоты (Х = ОН) D- оксикислоты (Х = ОН)

L-аминокислоты (Х = NH 2) D- аминокислоты (Х = NH 2)

Конфигурацию всех альфа -оксикислот, имеющих в стандартно написанной проекционной формуле Фишера гидроксильную группу слева, обозначают знаком L ; если же гидроксил расположен в проекционной формуле справа - знаком D [ПРИМ.7] .

Ключом для обозначения конфигурации сахаров служит глицериновый альдегид:

L-(-)-глицериновый альдегид D- (+)-глицериновый альдегид

В молекулах сахаров обозначение D- или L- относится к конфигурации нижнего асимметрического центра.

Система D- ,L- обозначений имеет существенные недостатки: во-первых, обозначение D- или L- указывает конфигурацию только одного асимметрического атома, во-вторых, для некоторых соединений получаются разные обозначения, в зависимости от того, взят ли в качестве ключа глицериновый альдегид или оксикислотный ключ, например:

Эти недостатки системы ключей ограничивают ее применение в настоящее время тремя классами оптически активных веществ: сахарами, аминокислотами и оксикислотами. На общее же применение рассчитана "R,S-система Кана, Ингольда и Прелога [ПРИМ.8] .

Для определения R- или S-конфигурации оптического антипода необходимо расположить тетраэдр заместителей вокруг асимметрического углеродного атома таким образом, чтобы младший заместитель (обычно это водород) имел направление "от наблюдателя". Тогда если движение при переходе по кругу трех остальных заместителей от старшего к среднему по старшинству и затем к самому младшему происходит против часовой стрелки - это R -изомер (ассоциируется с таким же движением руки при написании буквы R), если по часовой стрелке - это S- изомер (ассоциируется с таким же движением руки при написании буквы S).

Для определения старшинства заместителей у асимметрического атома используются правила подсчета атомных номеров, уже рассматривавшиеся нами в связи с Z,E-номенклатурой геометрических изомеров (см. ).

Для выбора R,S-обозначений по проекционной формуле необходимо путем четного числа перестановок (не изменяющих, как мы знаем, стереохимического смысла формулы) расположить заместители так, чтобы младший из них (обычно водород) оказался внизу проекционной формулы. Тогда старшинство остальных трех заместителей, падающее по часовой стрелке, соответствует обозначению R, против часовой стрелки - обозначению S [ПРИМ.9] :

Контрольные задачи

3. Определите конфигурацию асимметрического центра аскорбиновой кислоты (витамина С) (по R,S -номенклатуре и по сравнению с глицериновым альдегидом):

4. Алкалоид эфедрин имеет формулу:

Дайте название этого соединения, используя R,S -номенклатуру.

5. Цистеин - заменимая аминокислота, участвующая в регуляции процессов обмена веществ, представляет собой L -1-амино-2-меркаптопропионовую кислоту. Изобразите его структурную формулу и дайте название по R,S -номенклатуре.

6. Левомицетин (антибиотик широкого спектра действия) представляет собой D (-)-трео-1-пара-нитрофенил-2-дихлорацетиламино-пропандиол-1,3. Изобразите его структуру в виде проекционной формулы Фишера.

7. Синэстрол - синтетический эстрогенный препарат нестероидного строения. Дайте его название с обозначением стереохимической конфигурации:

II.8. Стереохимия циклических соединений

При замыкании цепи углеродных атомов в плоский цикл валентные углы атомов углерода вынуждены отклоняться от своего нормального тетраэдрического значения, причем величина этого отклонения зависит от числа атомов в цикле. Чем больше угол отклонения валентных связей, тем больше должен быть запас энергии молекулы, тем меньше устойчивость цикла. Однако, плоское строение имеет только трехчленный циклический углеводород (циклопропан); начиная с циклобутана молекулы циклоалканов имеют неплоское строение, что понижает "напряжение" в системе.

Молекула циклогексана может существовать в виде нескольких конформаций, в которых сохраняются "нормальные" валентные углы (для упрощения показаны только атомы углерода):

Энергетически наиболее выгодной является конформация I - так называемая форма "кресла ". Конформация II - "твист " - занимает промежуточное положение: она менее выгодна, чем конформация кресла (из-за наличия в ней заслоненно расположенных атомов водорода), но более выгодна, чем конформация III. Конформация III - "ванна " - наименее выгодна из трех вследствие значительного отталкивания направленных верх атомов водорода.

Рассмотрение двенадцати связей С-Н в конформации кресла позволяет разделить их на две группы: шесть аксиальных связей, направленных поочередно то вверх, то вниз, и шесть экваториальных связей, направленных в стороны. В монозамещенных циклогексанах заместитель может находиться либо в экваториальном, либо в аксиальном положении. Эти две конформации обычно находятся в равновесии и быстро переходят друг в друга через конформацию твист:

Экваториальная конформация (е) обычно беднее энергией и поэтому более выгодна, чем аксиальная (а).

При появлении в циклах заместителей (боковых цепей) кроме проблемы конформации самого цикла перед исследователем встают и проблемы конфигурации заместителей : так, в случае наличия двух одинаковых или различных заместителей появляются цис-транс -изомера. Отметим, что говорить о цис-транс -конфигурации заместителей имеет смысл только в приложении к насыщенным малым и средним циклам (до С 8): в кольцах с большим числом звеньев подвижность становится уже столь значительной, что рассуждения о цис- или транс - положении заместителей теряют смысл.

Так, классическим примером являются стереоизомерные циклопропан-1,2-дикарбоновые кислоты. Существуют две стереоизомерные кислоты: одна из них, имеющая т.пл. 139 о С, способна образовывать циклический ангидрид и является, следовательно, цис -изомером. Другая стереоизомерная кислота с т.пл. 175 о С, циклического ангидрида не образует; этотранс -изомер [ПРИМ.10] :

В таких же отношениях друг с другом находятся две стереоизомерные 1,2,2-триметилциклопентан-1,3-дикарбоновых кислоты. Одна из них, камфорная кислота, т.пл. 187 о С, образует ангидрид и, следовательно, является цис -изомером. Другая - изокамфорная кислота, т.пл. 171 о С, - ангидрида не образует, это транс -изомер:

цис- транс-

Хотя молекула циклопентана на самом деле неплоская, для наглядности удобно изображать ее в плоском виде, как на приведенном выше рисунке, имея в виду, что в цис- изомере два заместителя находятся по одну сторону цикла , а в транс -изомере - по разные стороны цикла .

Дизамещенные производные циклогексана также могут существовать в цис- или транс-форме:

Атом углерода не обладает монополией на создание хиральных центров в молекулах органических соединений. Центром хиральности могут быть также атомы кремния, олова, четырехковалентного азота в четвертичных аммониевых солях и окисях третичных аминов:

В этих соединениях центр асимметрии имеет тетраэдрическую конфигурацию, как и асимметрический атом углерода. Существуют, однако, и соединения с иной пространственной структурой хирального центра.

Пирамидальную конфигурацию имеют хиральные центры, образованные атомами трехвалентного азота, фосфора, мышьяка, сурьмы, серы. В принципе, центр асимметрии можно считать тетраэдрическим, если в качестве четвертого заместителя принять неподеленную электронную пару гетероатома:

Оптическая активность может возникать и без хирального центра, за счет хиральности структуры всей молекулы в целом (молекулярная хиральность или молекулярная асимметрия ). Наиболее характерными примерами являются наличие хиральной оси либо хиральной плоскости .

Хиральная ось возникает, например, в алленах, содержащих различные заместители при sp 2 -гибридных углеродных атомах. Легко видеть, что приведенные ниже соединения являются зеркальными изображениями, а, значит, оптическими антиподами:

Ось хиральности показана на рисунках стрелкой.

Другой класс соединений, имеющих хиральную ось - оптически активные бифенилы, имеющие в орто -положениях объемистые заместители, затрудняющие свободное вращение вокруг С-С связи, соединяющей ареновые кольца:

Хиральная плоскость характеризуется тем, что у нее можно различить "верх" и "низ", а также "правую" и "левую" стороны. Примером соединений с хиральной плоскостью могут служить оптически активный транс- циклооктен и оптически активное производное ферроцена.

Химикам уже давно известно явление изомерии - когда два вещества имеют одну и ту же брутто-формулу (отражающую только количество разных атомов в веществе), но разные свойства - из-за разного порядка соединения атомов.

Особенно богата изомерами органическая химия. К примеру, этиловый спирт и диметиловый эфир имеют одну и ту же брутто-формулу: C 2 H 6 O, но структурная формула спирта - CH 3 –CH 2 –OH, а эфира - CH 3 –O–CH 3 . Эти вещества имеют разные свойства - как химические, так и физические (температура плавления, вязкость и т. д.).

В органической химии известны и так называемые оптические изомеры - молекулы, имеющие одинаковую структурную формулу, но не совместимые со своим зеркальным отражением. Простейший пример такой молекулы - это атом углерода с четырьмя разными заместителями. К примеру, СHClBrF или аланин CH 3 CHNH 2 COOH (рис. 1). Наличие у такой молекулы двух разных конфигураций связано с тем, что у атома углерода, образующего четыре одинарные связи, эти связи направлены к вершинам тетраэдра.

Оптические изомеры имеют одинаковый цвет, температуру кипения, плотность. Однако такие вещества обладают интересным физическим свойством - они вращают плоскость поляризации пропущенного через них поляризованного света. Один изомер будет вращать ее влево, другой - вправо.

Атом углерода с четырьмя разными заместителями называется хиральным атомом (от греческого heiros «ладонь» - тот же корень, что и в слове «хиромантия»). Чем больше хиральных атомов в молекуле, тем больше у вещества может быть оптических изомеров.

Интересно, что возможны органические вещества, которые имеют оптические изомеры, хотя в них формально нет ни одного хирального атома - центра изомерии.

Задача

Приведите пример органического вещества, не имеющего хиральных атомов, но при этом имеющего оптические изомеры, с минимальным количеством атомов углерода.


Подсказка 1

Для того чтобы молекула некоторого вещества не совпадала со своим зеркальным отражением, совершенно не обязательно, чтобы у нее был хотя бы один хиральный атом. К примеру, любая молекула в форме спирали будет оптически активной.

Подсказка 2

Кроме того, вспомните, к вершинам какой геометрической фигуры направлены четыре связи в хиральном атоме углерода.

Решение

Начнем с того, что для несовместимости со своим зеркальным отражением молекуле недостаточно быть просто несимметричной. Молекула может быть не равна своему отражению «на бумаге», но совместима с ним. Скажем, молекулу HCl мы можем просто повернуть (или посмотреть на нее с другой стороны). Мы можем также вращать части молекулы вокруг одинарных связей - а вот с двойными и тройными связями так поступать нельзя, они при этом рвутся.

Итак, если структура молекулы имеет такую пространственную асимметрию, что она не совмещается со своим зеркальным отражением, то молекула и ее отражение называются оптическими изомерами. Наша цель - попробовать придумать структуру, которая бы была несовместима со своим зеркальным отражением, имела бы минимальное количество атомов углерода, и при этом сами эти атомы не были бы хиральными центрами молекулы.

На первый взгляд, такой молекулой могли бы быть замещенные этилены, где вместо атомов водорода - четыре разных заместителя:

Однако несмотря на то, что у такого вещества есть изомеры (два произвольно выбранных заместителя у разных атомов углерода могут располагаться по одну сторону двойной связи или по разные), хиральными они не будут, так как молекулы с одной двойной связью - плоские; чтобы совместить их со своим зеркальным отражением, их достаточно просто повернуть на 180° вокруг оси, лежащей в плоскости молекулы и перпендикулярной двойной связи.

Существует вариант с тремя атомами углерода, который формально уже можно назвать решением нашей задачи. Четырехзамещенные аллены RR"C=C=CR"R""" тоже содержат двойные связи, но их молекулы уже не плоские. Дело в том, что если у одного атома углерода есть две двойные связи, то их плоскости повернуты друг относительно друга на 90 градусов:

Эта молекула уже хиральна, и можно сказать, что задачу мы решили. Однако в ней есть «хиральный центр» - центральный атом углерода. Попробуем решить задачу другим способом.

Три атома углерода можно расположить по-другому - создав из них треугольник. У нас получится вещество циклопропан, С 3 H 6:

Это хорошо известное вещество, которое до сих пор иногда используется в медицине в качестве средства для наркоза. Атомы углерода образуют жесткую плоскость. Каждый из них связан с двумя атомами водорода - один над плоскостью, другой - под ней.

Теперь заменим у двух атомов углерода по одному атому водорода на два других заместителя - к примеру, хлор и бром - так, чтобы они оказались по разные стороны от плоскости атомов углерода. Такое положение заместителей называется транс -изомером 1,2-дизамещенного циклопропана. (Если бы эти заместители располагались по одну сторону от плоскости, у нас получился бы цис -изомер, но он нас сейчас не интересует).

Внимательно посмотрим на получившуюся молекулу и представим себе ее зеркальное отражение:

Обе структуры, как бы мы ни крутили их в пространстве, друг с другом не совмещаются, а атома - хирального центра тут нет.

А теперь попробуем создать полный аналог хирального атома углерода - но без хирального центра. Вернемся к первоначальному атому, с которого мы начали (см. условие задачи). Четыре связи его направлены к вершинам тетраэдра. Давайте попробуем расположить по атому углерода в его вершинах и соединить их связями.

У нас получится углеродный скелет вещества C 4 H 4 - тетраэдрана. Само это вещество еще не получено химиками, но его производные уже существуют в реальности. Если заместить в нём все атомы водорода на разные заместители, то получится вполне себе хиральная молекула, «хиральный центр» которой будет располагаться внутри тетраэдра:

Послесловие

Тема изомерии - одна из самых благодатных тем для игры ума. Даже в школьных олимпиадах по химии очень часто можно встретить задания с просьбой написать все изомеры того или иного вещества (иногда сами составители задач чего-то не рассчитывают, и на решение уходит много времени и очень много бумаги; у автора этой задачи на районной олимпиаде как-то ушло полтора часа и целая тетрадка).

Оптические изомеры - всего один из вариантов изомерии в органической химии, но очень важный.

К примеру, все основные аминокислоты, которые входят в состав наших белков, имеют формулу H 2 N–CH(R)–COOH - то есть все (кроме глицина, у которого R тоже представляет собой атом водорода) имеют асимметрический атом углерода и имеют оптические изомеры. И в нашем организме встречаются почти исключительно L-изомеры аминокислот (если не вдаваться в тонкости номенклатуры хиральных атомов, которых существует целых три типа, то можно назвать эти молекулы «левыми»). И биохимики до сих пор гадают, почему природа выбрала именно этот изомер - ведь при всех реакциях, когда из более простых веществ получаются вещества с хиральным атомом (без присутствия специфических катализаторов) образуется смесь двух изомеров в равных частях.

Синтетики тоже любят «поиграть» с оптической изомерией и при этом уже создали множество веществ без хирального атома - но с оптической активностью.

Кстати, можно создать хиральную молекулу вообще без заместителей. И она будет достаточно небольшой. Существуют так называемые ароматические углеводороды. Самый простой из них - бензол, C 6 H 6 . Его структуру учат в школе - плоский шестигранник. Вещество посложнее - нафталин. Это уже два соединенных по одной стороне бензольных кольца:

Три кольца можно уже соединять в линию - получится антрацен , а можно - под углом, и тогда у нас получится фенантрен:

Так вот, если продолжать соединять кольца под углом и дойти до шести колец, то крайние кольца упрутся друг в друга, им не хватит места, и плоскость молекулы нарушится. Вещество из шести колец называется гексагелицен, и его молекула уже представляет собой спираль. А значит, эта молекула может быть либо левой спиралью, либо правой, и будет иметь оптические изомеры.

Кстати, химики научились получать такие спирали даже из 12 бензольных колец, в них уже есть пара витков.

Более того, и оптическими изомерами весь ассортимент разнообразия химических веществ, как ни странно, не заканчивается.

Стоит сказать о возможности так называемой топологической изомерии. Что это такое? К примеру, существует вещество в форме кольца. Две молекулы этого вещества изомерны одной, в которой одно кольцо продето в другое. И такие молекулы уже есть. Класс веществ, в которых две или более частей молекул удерживаются механически, как звенья цепи, называются катенанами - от латинского catena «цепь» (см. Catenane). Биохимики научились получать катенаны из молекул ДНК, и более короткие структуры тоже складывали в цепочки.

А если представить себе катенан из четырех колец, то возможна изомерия между молекулой, в которой три кольца продеты в четвертое, и молекулой, в которых кольца соединены последовательно.

В литературе сплошь и рядом утверждается, что для питания и в качестве структурных элементов нашему метаболизму подходят только левовращающие аминокислоты. Психологически это понятно: природные аминокислоты действительно чаще всего относятся к так называемому L-ряду, а буква L обычно ассоциируется с понятием «левый». Однако такое «отнесение» L-соединений к левовращающим, а соединений D-ряда - к правовращающим абсолютно неверно. Достаточно взглянуть хотя бы на список 23 важнейших аминокислот белка (они приведены, например, в учебнике А. Н. Несмеянова и Н. А. Несмеянова «Начала органической химии»), чтобы убедиться, что левовращающих (для растворов в ледяной уксусной кислоте) - всего лишь семь, меньше трети. Остальные - правовращающие, за исключением оптически неактивного глицина. В «Химической энциклопедии» в списке из 26 наиболее распространенных аминокислот левовращающих и того меньше, всего шесть (23%). Многие путают направление вращения плоскости поляризации света веществом и строение его молекул, которые можно отнести к D- или L-виду.

Поляризация света и оптическая активность

Со времен Ньютона в науке шли споры: свет - это волны или частицы. Томас Юнг сформулировал в 1800 году принцип суперпозиции волн и на его основании объяснил явление интерференции света. В 1808 году Этьен Луи Малюс, экспериментируя с кристаллами исландского шпата (кальцита), открыл явление поляризации света. В 1816 году Огюстен Жан Френель высказал идею о том, что световые волны - поперечные. Френель объяснил и явление поляризации света: в обычном свете колебания происходят хаотично, во всех направлениях, перпендикулярных направлению луча. Но, пройдя через некоторые кристаллы, например исландский шпат или турмалин, свет приобретает особые свойства: волны в нем колеблются только в одной плоскости. Образно говоря, луч такого света подобен шерстяной нитке, которую продернули через узкую щель между двумя острыми лезвиями бритвы. Глаз человека лишь в редких случаях и с трудом может отличить обычный свет от поляризованного, однако это легко сделать с помощью простейших оптических приборов - поляриметров.

Выяснилось также, что при прохождении поляризованного света через некоторые вещества плоскость поляризации поворачивается. Впервые это явление обнаружил в 1811 году Франсуа Доминик Араго у кристаллов кварца. Природные кристаллы кварца имеют неправильное, асимметричное строение, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения. Эти кристаллы вращают плоскость поляризации света в противоположных направлениях; их назвали право- и левовращающими.

В 1815 году Жан Батист Био и Томас Зеебек выяснили, что некоторые органические вещества (например, сахар или скипидар) также обладают способностью вращать плоскость поляризации, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состоянии. Так было доказано, что оптическая активность может быть связана не только с асимметрией кристаллов, но и с каким-то неизвестным свойством самих молекул. Как и в случае кристаллов, некоторые химические соединения могли существовать в виде право- и левовращающих разновидностей, причем самый тщательный химический анализ не мог обнаружить между ними никаких различий. Такие разновидности назвали оптическими изомерами, а сами соединения - оптически активными. Оказалось, что у оптически активных веществ есть и третий тип изомеров -оптически неактивные. Это обнаружил в 1830 году знаменитый немецкий химик Йене Якоб Берцелиус: виноградная кислота С 4 Н 6 0 6 оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Позднее была открыта и не встречающаяся в природе «левая» винная кислота - антипод правовращающей.

В 1828 году Уильям Николь, используя прозрачные кристаллы исландского шпата, сконструировал поляризатор света - «призму Николя». А осуществив в 1839 году комбинацию двух таких призм, он получил поляриметр - прибор для измерения угла поворота плоскости поляризации света. С тех пор такой поляриметр стал одним из самых распространенных приборов в физических лабораториях.

Открытие Пастера

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например кубические кристаллы поваренной соли, оптически неактивны. Причина же оптической активности молекул долгое время оставалась загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 году Луи Пастер. Еще в студенческие годы он заинтересовался химией и кристаллографией, после окончания Высшей нормальной школы в Париже 26-летний Пастер работал лаборантом у Антуана Балара (первооткрывателя брома).

В ходе исследования Пастер приготовил раствор кислой натриевой соли виноградной кислоты НООС–CHOH–CHOH–COONa, насытил раствор аммиаком и, медленно выпаривая воду, получил красивые призматические кристаллы тетрагидрата натриево-аммониевой соли Na(NH) 4 C 4 H 4 O 6 ·4H 2 O. Кристаллы эти оказались асимметричными. У части кристаллов одна характерная грань находилась справа, а у других - слева, причем по форме два типа кристаллов были как бы зеркальным отражением друг друга. Тех и других кристаллов получилось поровну. Зная, что в подобных случаях кристаллы кварца вращают в разные стороны, Пастер решил проверить, не будет ли наблюдаться это явление и на полученной им соли. Вооружившись увеличительным стеклом и пинцетом, Пастер аккуратно разделил кристаллы на две кучки. Их растворы, как и следовало ожидать, обладали противоположным оптическим вращением, а смесь растворов была оптически неактивной. Было непонятно, почему одно исходное вещество дало кристаллы разной формы. Пастер на этом не остановился. Из каждого раствора он осадил нерастворимую свинцовую или бариевую соль, а действуя на эти соли сильной серной кислотой, вытеснил из них более слабую органическую. Можно было предположить, что в обоих случаях получится исходная виноградная кислота, которая, как мы помним, была неактивной. Каково же было удивление Пастера, когда оказалось, что из одного раствора соли образовалась вовсе не виноградная, а известная правовращающая винная кислота, а из другого раствора получилась такая же кислота, но вращающая влево! До той поры левовращающую винную кислоту никто не видел! Эти кислоты получили название d -винной для правовращающей разновидности (от лат. dexter - правый) и l -винной для левовращающего изомера (от лат. laevus - левый).

Открытие состояло в том, что давно известная неактивная виноградная кислота оказалась смесью равных количеств также известной «правой» винной кислоты и ранее не известной «левой». Именно поэтому их смесь в кристалле или в растворе не обладает оптической активностью. Для такой смеси стали применять название рацемат (от латинского racemus - виноград; на латыни acidum racemicum - виноградная кислота), а два антипода, дающие при смешении в равных количествах оптически неактивную смесь, получили название энантиомеров (от греч. enantios - противоположный). Пастеру повезло: в дальнейшем обнаружили всего несколько подобных случаев кристаллизации при определенной температуре смеси оптически различных кристалликов, достаточно крупных, чтобы их можно было под лупой разделить пинцетом. Более того, натрий-аммониевая соль винной кислоты, с которой работал Пастер, образует кристаллы разной формы только в том случае, если кристаллизация происходит из раствора, температура которого ниже 28°С. При этом выпадает тетрагидрат. При более высоких температурах из раствора выпадают симметричные кристаллы моногидрата.

Вскоре Пастер открыл также четвертую форму винной кислоты. Она была оптически неактивной, но не являлась рацематом, так как разделить ее на антиподы оказалось невозможно. Пастер назвал эту кислоту мезовинной, от греч. mesos - средний, промежуточный. Пастер нашел еще два метода разделения рацемата на два антипода. Биохимический метод основан на избирательной способности некоторых микроорганизмов усваивать только один из изомеров. И здесь Пастеру повезло. Один из аптекарей аптеки дал ему давно стоявшую склянку с виноградной кислотой, в которой завелась зеленая плесень. В своей лаборатории Пастер выяснил: бывшая когда-то неактивной кислота стала левовращающей. Зеленый плесневой грибок Penicillum glaucum в растворе разбавленной виноградной кислоты или ее солей «поедает» только правый изомер, оставляя левый без изменения. Такое же действие оказывает эта плесень на «недеятельную» миндальную кислоту, только в данном случае она ассимилирует левовращающий изомер, не трогая правовращающий. Таких случаев стало известно немало. Например, дрожжи сахаромицета эллипсоидального (Saccharomyces ellipsoideus ), в отличие от Penicillum glaucum , «специализируется» на правом изомере миндальной кислоты, оставляя без изменения левый. Другой способ разделения рацематов был химическим. Для него требовалось заранее иметь оптически активное вещество, которое при взаимодействии с рацемической смесью «выбирало» бы из нее только один энантиомер. Например, оптически активное основание давало с виноградной кислотой оптически активную соль, из которой можно было выделить соответствующий энантиомер винной и кислоты.

Работа Пастера, доказывающая возможность «расщепления» оптически неактивного соединения на антиподы, первоначально вызвала у многих химиков недоверие. Даже сам Био не поверил своему ассистенту, пока собственноручно не повторил его опыт. Вскоре Жозеф Ле Бель с помощью третьего пастеровского метода расщепил несколько спиртов на оптически активные антиподы. Иоганн Вислиценус установил, что существуют две молочные кислоты: оптически неактивная, образующаяся в скисшем молоке (молочная кислота брожения), и правовращающая, которая появляется в работающей мышце (мясомолочная кислота). Подобных примеров становилось все больше, и требовалась теория, объясняющая, чем же отличаются друг от друга молекулы антиподов. Такую теорию создал молодой голландский ученый Вант-Гофф («Химия и жизнь», 2009, № 1). Согласно этой теории, молекулы, как и кристаллы, могут быть «правыми» и «левыми», являясь зеркальным отражением друг друга. Простейший пример - молекулы, в которых имеется так называемый асимметрический атом углерода, окруженный четырьмя разными группами. Возьмем простейшую аминокислоту аланин: две изображенные молекулы невозможно совместить в пространстве никакими поворотами.

Подобные структуры, которые отличаются друг от друга как правая рука от левой, получили название хиральных (от греч. heir - рука).

В винной кислоте два асимметрических атома углерода. Если оба они будут «правыми», получится правовращающая (+)-винная кислота, если «левыми» - левовращающая (–)-винная, если один «левым», а другой - «правым», то получится мезовинная кислота. Если в смеси поровну «правых» и «левых» молекул, вещество в целом будет оптически неактивным. Именно такие вещества и получаются в колбе в результате обычного химического синтеза. И только в живых организмах при участии асимметричных агентов (например, ферментов) образуются асимметричные соединения. Так, в природе преобладают аминокислоты и сахариды только одной конфигурации, а образование их антиподов подавлено. В некоторых случаях разные энантиомеры можно различить и без всяких приборов - когда они по-разному взаимодействует с асимметрическими рецепторами в нашем организме. Яркий пример - аминокислота лейцин: ее правовращающий изомер сладкий, а левовращающий - горький. Заметим, что на естественный вопрос - как появились на Земле первые оптически активные химические соединения - четкого ответа пока нет.

Проблема абсолютной конфигурации

Раньше не было возможности определить, какова в действительности пространственная конфигурация молекул того или иного оптически активного вещества, например упомянутого выше аланина. Однако чисто химическими методами можно было установить аналогичность конфигураций разных веществ. Например, молекулы правовращающего d -глицеринового альдегида были аналогичны по своей конфигурации молекулам левовращающей l -молочной кислоты и правовращающей d -яблочной кислоты. В 1906 году по предложению М. А. Розанова в качестве стандарта для установления относительной конфигурации оптически активных молекул был выбран глицериновый альдегид. При этом Э. Г. Фишер предложил правовращающему глицериновому альдегиду приписать (чисто произвольно) структуру,

в которой звездочкой обозначен асимметрический атом углерода, связанный с четырьмя разными заместителями. На подобных рисунках две «горизонтальные» связи (в данном случае это связи С–Н и С–ОН) располагаются под плоскостью рисунка, а две «вертикальные» связи (С–СНО и С–СН 2 ОН) - над плоскостью. Такой способ изображения называется проекцией Фишера, названной в честь Эмиля Германа Фишера, второго лауреата Нобелевской премии по химии за 1902 год.

Несколько слов о практически неизвестном у нас Розанове. Мартин Андре Розанов (1874–1951) родился на Украине в семье Абрахама и Клары Розенбергов. После окончания классической гимназии в родном Николаеве продолжил образование в Берлине и Париже, а затем в Нью-Йорке. Работал в Нью-Йоркском университете, затем в Питтсбургском институте Меллона, где ему впервые в истории института была предоставлена пожизненная должность профессора химии. Сестра Мартина Лилиан (1886–1986) была деканом математического факультета в университете Лонг-Айленда; брат Аарон Джошуа был известным американским психиатром, работал в Калифорнии. Среди «нехимических» работ М. А. Розанова выделяется большая статья «Эдисон в своей лаборатории» (1932), в которой автор помимо прочего описал разные забавные случаи, в том числе из опыта своего общения с известным изобретателем.

Изображенную структуру назвали D(+)-глицериновым альдегидом. Соответственно все вещества, стереохимически аналогичные этому альдегиду, стали относить к D-ряду. Оптический антипод этого альдегида был назван L-глицериновым альдегидом, а родственные ему вещества стали относить к L-ряду («+» означает, что плоскость поляризации вращается вправо, «–» - влево):

Глицериновый альдегид - одно из простейших оптически активных соединений, легко получается окислением глицерина, а главное - из него можно путем ряда последовательных асимметрических синтезов получить самые различные соединения. Так устанавливается относительная конфигурация правовращающих винной и яблочной кислот и изосерина, левовращающей молочной кислоты и множества других оптически активных соединений. При альдольной конденсации глицеринового альдегида с дигидроксиацетоном получается смесь фруктозы и сорбозы, которые можно разделить. Понятно, что в ходе таких синтезов абсолютная конфигурация у асимметрического атома углерода должна оставаться неизменной. Так и происходит, если не рвется химическая связь этого атома углерода с одним из соседних заместителей. В противном случае может произойти либо потеря оптической активности (как, например, в реакциях нуклеофильного замещения типа S N 1), либо изменение конфигурации на противоположную. Последний процесс, так называемое вальденовское обращение, происходит, например, в реакциях S N 2; он назван по имени Пауля (Павла Ивановича) Вальдена (1863–1957), открывшего его в 1889 году.

Прописные буквы D и L вместо строчных были приняты для того, чтобы не смешивать конфигурацию вещества, установленную относительно глицеринового альдегида, с направлением вращения плоскости поляризации света этим веществом. Так и получилось, что часть соединений D-ряда вращают вправо, часть - влево, и направление вращения никак не связано с принадлежностью вещества к кому-либо из этих рядов. Например, в природе найдена только D(-)-фруктоза (она же левулоза, потому что вращает плоскость поляризации влево). С другой стороны, и L-, и D-аспарагины - правовращающие аминокислоты. У миндальной кислоты С 6 Н 5 СН(ОН)СООН - два оптических изомера: левовращающий D(–)- и правовращающий L(+)-изомер. Таких примеров множество. Следовательно, нельзя заранее установить отношение между знаком вращения соединения и его конфигурацией: два соединения с одной и той же относительной конфигурацией могут иметь противоположные знаки вращения. И наоборот, сходные соединения с одним и тем же знаком вращения могут иметь противоположные относительные конфигурации.

Прямое определение абсолютной конфигурации молекулы - сложная задача, и в течение длительного времени химики обходились лишь отнесением молекул к D- или L-ряду. И только в середине XX века эта задача была решена Дж. Бейвутом с сотрудниками, которые работали в лаборатории имени Вант-Гоффа Утрехтского университета. Эпохальная работа под названием «Определение абсолютной конфигурации оптически активных веществ методом дифракции рентгеновских лучей» была опубликована 18 августа 1951 года в журнале «Nature ». Авторы путем рентгеноструктурного анализа кристаллов калий-рубидиевой соли D(+)-винной кислоты показали, что Фишер не ошибся, постулировав абсолютную конфигурацию энантиомеров глицеринового альдегида! А это значит, что правильны были установлены не только относительные, но и абсолютные конфигурации всех оптически активных соединений! На самом деле у Фишера было ровно по 50% шансов сделать правильный выбор или ошибиться. Сходная история имела место, когда задолго до открытия электрона выбирали направление для протекания электрического тока. И - ошиблись, выбрав направление от плюса к минусу.

Поскольку в основополагающей исходной публикации Бейвута в журнале Nature не были приведены исходные экспериментальные данные, принципиальным оставался вопрос об обоснованности сделанных выводов, тем более что экспериментальная техника тех времен была далеко не совершенной. В частности, не было компьютеров, без которых сейчас не обходится ни одна работа в области рентгеноструктурного анализа. Чтобы снять все возможные подозрения, сотрудники Центра молекулярной биологии Утрехтского университета Мартин Лутц и М. М. Шроерс предприняли недавно проверку результатов своих коллег более чем полувековой давности с использованием самого современного оборудования. Их работа, опубликованная в августе 2008 года в журнале «Acta Crystallographica », section С: «Crystal Structure Communications », называлась «Был ли прав Бейвут? Повторное исследование тетрагидрата тартрата натрия - рубидия». Для получения монокристалла авторы нагрели раствор (+)-винной кислоты до 60°С и начали по каплям добавлять в него раствор эквимолярной смеси карбонатов натрия и рубидия. Сначала в осадок выпал менее растворимый кислый тартрат рубидия. Затем, когда закончилось выделение углекислого газа, осадок полностью перешел в раствор. При его испарении при комнатной температуре образовался бесцветный порошок, перекристаллизация которого из минимального количества воды дала кристаллы Na + ·Rb + ·C 4 H 4 О 6 2– ·4H 2 О, пригодные для исследования. На вопрос, заданный в заголовке статьи, авторы ответили «да».

Работа Бейвута с сотрудниками 1951 года была поистине эпохальной. Впервые появилась возможность избавиться от некоторого несоответствия в обозначениях D и L, которые указывали только на генетическую связь с глицериновыми альдегидами, но никак не на направление оптического вращения. Такая возможность была осуществлена в 1956 году по предложению Роберта Сидни Кана и Кристофера Келка Ингольда и лауреата Нобелевской премии за 1975 год (совместно с Дж. У. Корнфортом) Владимира Прелога. Их первая статья была опубликована в сравнительно малоизвестном швейцарском журнале «Experientia », и тем не менее предложение получило широкое распространение. Так, оно подробно описывается в учебнике органической химии Луиса и Мэри Физеров (1961, русский перевод 1966). Но наибольшую известность эта система получила после публикации в 1966 году детально разработанной универсальной стереохимической номенклатуры (см. Cahn R.S., Ingold С.К., Prelog V. Specification of Molecule Chirality // Angew. Chem., Int. Ed. Engl. , 1966, 5, 385–415; полный текст - PDF, 3,4 Мб).

Авторы предложили ввести понятие хиральности как свойства объекта быть несовместимым со своим отображением в идеальном плоском зеркале и R S -систему (от лат. rectus -прямой, правильный и sinister - левый) для обозначения хиральности.

Подробное описание применения этого правила к оптически активным соединениям можно найти в учебниках органической химии, а так же в учебнике К. П. Бутина . В нем используется определенное расположение групп вокруг хирального центра - по часовой стрелке, в соответствии со «старшинством» этих групп. В частности, по новой номенклатуре правовращающий D-глицериновый альдегид получает обозначение R. Обозначения R и S добавляют к названию соединения в качестве приставок. Так, энантиомерами 1-бром-1-хлорэтана являются R -1-бром-1-хлорэтан и S -1-бром-1-хлорэтан. Их оптически неактивная рацемическая модификация обозначается R,S -1-бром-1-хлорэтан. Однако по традиции широко используются и старые обозначения D и L, например, для cахаров и аминокислот.

В заключение этого раздела отметим еще одно весьма распространенное заблуждение - о том, что все природные аминокислоты относятся якобы исключительно к L-ряду. На самом деле это не так: D-аминокислоты тоже 2 встречаются в природе, хотя и реже, чем аминокислоты L-ряда, в основном - в мире низших организмов. Они присутствуют, например, в пептидных антибиотиках, в оболочке некоторых бактерий. Некоторые термофильные микроорганизмы, живущие в горячих источниках и термальных водах, используют высокие концентрации D-аланина в качестве осморегулятора. Плазма крови высших организмов также содержит D-аминокислоты. В организме человека вырабатывается в качестве нейромедиатора D-серин. В нервных клетках высших организмов находят D-аланин, D-аспарагин и D-серин. С D-аминокислотами работают, например, на кафедре химической энзимологии химического факультета МГУ. А в 2008 году на биологическом факультете МГУ состоялась защита А. В. Дмитриевым диссертации на соискание степени доктора физико-математических наук на тему «Физико-химические механизмы переноса ионов в природных и хирально модифицированных модельных каналах». Автор изучал, в частности, модифицированные модельные белки, включающие D-аминокислоты. Было показано, что для получения первичной структуры белка с природной функциональностью, построенного из D-аминокислот, достаточно десяти D-аминокислот.

Хиральные лекарства

Химики часто относятся к энантиомерам как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Это стало очевидным после трагической истории с талидомидом - лекарственным средством, которое широко применялось в 60-е годы XX века в Европе беременными женщинами как эффективное снотворное и успокаивающее. Со временем проявилось его тератогенное действие, и на свет появилось много младенцев с врожденными уродствами. После этого европейцы заимствовали более строгую американскую систему сертификации лекарств - в Америке талидомид не был допущен к продаже. Но лишь в конце 80-х годов выяснилось, что причиной несчастии стал только один из энантиомеров талидомида. О таком различии в действии лекарственных форм раньше не знали, и продаваемый талидомид был рацемической смесью.

В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Их получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений (к ним относятся углеводы, аминокислоты, терпены, молочная и винная кислоты и др.) и прямым синтезом. Последний также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают рацемат. Это одна из причин высокой стоимости некоторых лекарств, и не удивительно, что из множества синтетических хиральных препаратов, выпускаемых во всем мире, лишь небольшую часть составляют оптически чистые, остальные - рацематы.

Необходимость в оптически чистых энантиомерах объясняется также тем, что часто только один из них обладает требуемым терапевтическим эффектом, тогда как второй антипод может в лучшем случае быть бесполезным, а в худшем вызвать нежелательные побочные эффекты или быть токсичным. Бывает и так, что каждый энантиомер обладает своим специфическим действием. Так, левовращающий S -тироксин (лекарственный препарат левотроид) - это природный гормон щитовидной железы Т4. А правовращающий R -тироксин («декстроид») понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например «Darvon » для наркотического анальгетика и «Novrad » для противокашлевого препарата.

Как уже отмечалось на примере аминокислоты лейцина, человек - существо хиральное. И это относится не только к его внешнему виду. Энантиомерные лекарства, взаимодействуя с хиральными молекулами в организме, например с ферментами, могут действовать по-разному. «Правильное» лекарство подходит к своему рецептору, как ключ к замку, и запускает желаемую биохимическую реакцию. Антиаритмическое средство S -анаприлин действует в сто раз сильнее, чем R -форма. У антигельминтного препарата левамизола активен в основном в S -изомер, тогда как его R- антипод вызывает тошноту, поэтому в свое время рацемический левамизол был заменен одним из энантиомеров. В 60-е годы одним из предшественников адреналина в организме - диоксифенилаланином (L-ДОФА) пытались лечить паркинсонизм. При этом выяснилось, что это вещество, а также родственные ему дофамин и метилдофа эффективны только в виде S -изомера. В то же время R -ДОФА вызывает серьезные побочные эффекты, в том числе заболевание крови. Фирма «Merck » разработала способ производства гипотензивного препарата метилдофа, включающий самопроизвольную кристаллизацию только нужного энантиомера путем введения в раствор небольшой затравки этого изомера.

И последний пример. Пеницилламин (3,3-диметилцистеин) - довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно дает прочные комплексы с ионами этих металлов, и эти комплексы удаляются почками. Применяют пеницилламин также при различных формах ревматоидного артрита, при системной склеродермии, в ряде других случаев. При этом применяют только S -форму препарата, так как R -изомер токсичен и может привести к слепоте. Недаром на обложке июньского номера американского журнала «Journal of Chemical Education » за 1996 год был помещен вот такой необычный рисунок. Название статьи о лекарственных средствах-антиподах было не менее красноречивым: «Когда молекула смотрится в зеркало».

Илья Абрамович Леенсон,
кандидат химических наук
«Химия и жизнь» №5, 2009

КУРСОВАЯ РАБОТА

Тема: "Оптическая изомерия"

Введение

1. Оптическая активность

1.2 б. Квантовая теория

1.2 в. Корпускулярная теория

2. Хиральные молекулы

2.1 Точечные группы симметрии

2.3 Типы хиральности

3. Номенклатура энантиомеров

3.1 По конфигурации: R - и S

3.3 По конфигурации: D - и L-

4.2 а. Химическая корреляция

5.3 Механическое расщепление

Заключение

В 1815 французский физик Жан Батист Био и немецкий физик Томас Зеебек установили, что некоторые органические вещества (например, сахар или скипидар) обладают свойством вращать плоскость поляризации света, в кристаллическом, в жидком, растворенном и даже газообразном состоянии (Впервые это явление обнаружил в 1811г. французский физик Франсуа Доминик Араго у кристаллов кварца). Так было доказано, что оптическая активность может быть связана не только с асимметрией кристаллов, но и с каким-то неизвестным свойством самих молекул. Оказалось, что некоторые химические соединения могут существовать в виде как право-, так и левовращающих разновидностей, причем самый тщательный химический анализ не обнаруживает между ними никаких различий. Это был новый тип изомерии, которую назвали оптической изомерией. Оказалось, что кроме право - и левовращающих, есть и третий тип изомеров - оптически неактивные. Это обнаружил в 1830 знаменитый немецкий химик Йёнс Якоб Берцелиус на примере виноградной (дигидроксиянтарной) кислоты НООС-СН (ОН) - СН (ОН) - СООН: эта кислота оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Позднее была открыта и не встречающаяся в природе "левая" винная кислота - антипод правовращающей.

Различить оптические изомеры можно с помощью поляриметра - прибора, измеряющего угол поворота плоскости поляризации. Для растворов этот угол линейно зависит от толщины слоя и концентрации оптически активного вещества (закон Био). Для разных веществ оптическая активность может изменяться в очень широких пределах. Так, в случае водных растворов разных аминокислот при 25° С удельная активность (она обозначается как D и измеряется для света с длиной волны 589 нм при концентрации 1 г/мл и толщине слоя 10 см) равна - 232° для цистина, - 86,2° для пролина, - 11,0° для лейцина, +1,8° для аланина, +13,5° для лизина и +33,2° для аспарагина.

Современные поляриметры позволяют измерять оптическое вращение с очень высокой точностью (до 0,001°). Подобные измерения позволяют быстро и точно определить концентрацию оптически активных веществ, например, содержание сахара в растворах на всех стадиях его производства - начиная от сырых продуктов и кончая концентрированным раствором и патокой.

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например, кубические кристаллы поваренной соли оптически неактивны. Причина же оптической активности молекул долгое время оставалась совершенно загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 никому тогда не известный Луи Пастер. Пастер, который выделил два антипода винной кислоты, которые получили название энантиомеров (от греч. enantios - противоположный). Пастер ввел для них обозначения L - и D-изомеров (от латинских слов laevus - левый и dexter - правый). Позднее немецкий химик Эмиль Фишер связал эти обозначения со строением двух энантиомеров одного из наиболее простых оптически активных веществ - глицеринового альдегида ОНСН2-СН (ОН) - СНО. В 1956 по предложению английских химиков Роберта Кана и Кристофера Ингольда и швейцарского химика Владимира Прелога для оптических изомеров были введены обозначения S (от лат. sinister - левый) и R (лат. rectus - правый); рацемат обозначают символом RS. Однако по традиции широко используются и старые обозначения (например, для углеводов, аминокислот). Следует отметить, что эти буквы указывают лишь на строение молекулы ("правое" или "левое" расположение определенных химических групп) и не связаны с направлением оптического вращения; последнее обозначают знаками плюс и минус, например, D (-) - фруктоза, D (+) - глюкоза.

Теория, объясняющая отличие друг от друга молекул антиподов была создана голландским ученым Вант-Гоффом. Согласно этой теории, молекулы, как и кристаллы, могут быть "правыми" и "левыми", являясь зеркальным отражением друг друга. Подобные структуры, которые отличаются друг от друга как правая рука от левой, получили название хиральных (от греч. heir - рука). Таким образом, оптическая активность - следствие пространственной изомерии (стереоизомерии) молекул.

оптическая изомерия эвантиомер хиральность

Теория Вант-Гоффа, заложившая основы современной стереохимии, завоевала общее признание, а ее создатель в 1901 стал первым лауреатом Нобелевской премии по химии.

1. Оптическая активность

Оптическая активность - это способность среды (кристаллов, растворов, паров вещества) вызывать вращение плоскости поляризации проходящего через нее оптического излучения (света).

Впервые оптическая активность была обнаружена в 1811 г.Д. Араго в кристаллах кварца. В 1815 г.Ж. Бои открыл оптическую активность чистых жидкостей (скипидара), а затем растворов и паров многих, главным образом органических веществ. Ж.Био установил, что поворот плоскости поляризации происходит либо по часовой стрелке, либо против нее, если посмотреть навстречу ходу лучей света и в соответствии с этим разделил оптически активные вещества на правовращающие (вращающие положительно, т.е. по часовой стрелке) и левовращающие (отрицательно вращающие) разновидности. Наблюдаемое значение угла поворота плоскости поляризации в случае раствора связано с толщиной образца и концентрацией оптически активного вещества.

Оптически активными веществами называют лишь те вещества, которые проявляют естественную оптическую активность. Существует также и искусственная или наведенная оптическая активность. Ее проявляют оптически неактивные вещества при помещении в магнитное поле (эффект Фарадея).

1.1 Оптически активные вещества

Оптически активные вещества подразделяются на два типа.

К первому типу относятся вещества, которые оптически активны лишь в кристаллической фазе (кварц, киноварь). Ко второму типу относятся вещества, которые оптически активны в любом агрегатном состоянии (например, сахара, камфара, винная кислота). У соединений первого типа оптическая активность является свойством кристалла как целого, но сами молекулы или ионы, составляющие кристалл, оптически неактивны. Кристаллы оптически активных веществ всегда существуют в двух формах - правой и левой; при этом решетка правого кристалла зеркально симметрична решетке левого кристалла и никакими поворотами и перемещениями левый и правый кристаллы не могут быть совмещены друг с другом. Оптическая активность правой и левой форм кристаллов имеет разные знаки и одинакова по абсолютной величине (при одинаковых внешних условиях). Правую и левую форму кристаллов называют оптическими антиподами.

У соединений второго типа оптическая активность обусловлена дисимметрическим строением самих молекул. Если зеркальное отображение молекулы никакими вращениями и перемещениями не может быть наложено на оригинал, молекула оптически активна; если такое наложение осуществить удается, то молекула оптически неактивна. (Под зеркалом понимают отражатель, лежащий вне молекулы, и отражение дает отображение всей молекулы).

Асимметрические молекулы и дисcимметрические молекулы не одно и то же. Асимметрические молекулы не имеют никаких элементов симметрии, тогда как в дисcимметрических молекулах некоторые элементы симметрии остаются. Диcсимметрия есть нарушение максимальной симметрии объекта. Оптическую активность проявляют все асимметрические молекулы, но далеко не все диссимметрические молекулы. Оптическая активность связана лишь с дисcимметрией, обусловливающей несовместимость объекта с его зеркальным отображением. Такой вид диссимметрии, получил название хиральность. Хиральные объекты несовместимы в пространстве и представляются как зеркальные отображения друг друга. Оптически активная молекула хиральна, а оптически неактивная ахиральна, однако если молекулу нельзя совместить с ее зеркальным отображением, то зеркальное отображение соответствует другой, отличной молекуле, которую, в принципе, можно синтезировать. Синтезированное зеркальное отображение хиральной молекулы будет ее реальным оптическим изомером. Чистое оптически активное соединение имеет только два оптических изомера (т.к. каждому объекту соответствует лишь одно зеркальное отображение). Оптические изомеры называются энантиомерами (или иногда энантиоморфами). Удельное вращение энантиомеров одинаково по абсолютной величине и противоположно по знаку: один энантиомер левовращающий, а второй правовращающий. Кроме знака вращения все другие физические и химические свойства энантиомеров в газовой фазе, а также в ахиральных жидких средах одинаковы. Однако, если жидкая среда хиральна (например, в раствор добавлен хиральный реагент или катализатор, или сам растворитель хирален) свойства энантиомеров начинают различаться. При взаимодействии с другими хиральными соединениями, отзывающимися на зеркальную изомерию молекул, энантиомеры реагируют с различными скоростями. Особенно ощутимо различие в физиологическом и биохимическом действии энантиомеров, что связано с энантиомерией биологических реагентов и катализаторов. Так, природные белки состоят из левых оптических изомеров аминокислот и поэтому искусственно синтезированные правые аминокислоты организмом не усваиваются; дрожжи сбраживают лишь правые изомеры сахаров, не затрагивая левые и т.д. Общее правило состоит в том, что энантиомеры проявляют идентичные свойства в симметричном (ахиральном) окружении, а в несимметричном (хиральном) окружении их свойства могут изменяться, Это свойство используется в асимметрическом синтезе и катализе. Смесь равных количеств энантиомеров, хотя и состоит из хиральных молекул, оптически неактивна, т.к. одинаковое по величине и противоположное по знаку вращение взаимно компенсируется. Такие смеси называют рацемическими смесями или рацематами. В газообразном состоянии, жидкой фазе и в растворах свойства рацематов обычно совпадают со свойствами чистых энантиомеров, однако в твердом состоянии такие свойства, как температура плавления, теплота плавления, растворимость, обычно отличаются.

1.2 Физические причины оптической активности

В ахиральной среде два энантиомера имеют одинаковые химические и физические свойства, но их легко отличить друг от друга по специфическому взаимодействию со светом. Один из энантиомеров вращает плоскость поляризации линейнополяризованного (плоскополяризованного) света вправо, а другой энантиомер - на точно такой же угол влево.

1.2 а. Феноменологическая модель

Феноменологическую модель оптической активности предложил Френель еще в 1823 г. Она основана на волновой теории света и с позиций современной науки не является достаточно строгой. Тем не менее, эта модель дает очень наглядное представление о причинах оптической активности и других явлениях, связанных с поглощением света хиральным веществом, в рамках классической электродинамики, поэтому ее часто используют и в настоящее время.

Согласно классическим представлениям, линейнополяризованный (плоскополяризованный) свет характеризуется тем, что векторы составляющих его зависимых от времени электрического (Е) и магнитного (Н) полей осциллируют во взаимно перпендикулярных плоскостях и их изменения носят синусоидальный характер во времени и в пространстве. Плоскополяризованный свет можно рассматривать как комбинацию левого и правого циркулярнополяризованных лучей, движущихся в фазе по отношению друг к другу. Если в начальной точке времени 1 электрические векторы левого и правого циркулярнополяризованных лучей ориентированы вверх, то в точке 2 вектор правого луча ориентирован вправо, а вектор левого луча влево (если смотреть в направлении движения света по оси z). В точке 3 векторы обоих лучей ориентированы вниз, в точке 4 вектор правого луча ориентирован влево, а вектор левого луча вправо, и т.д. Таким образом, правый и левый циркулярнополяризованные лучи обладают соответственно правой и левой спиральностью вращения вектора электрического поля. Сумма этих лучей дает плоскополяризованный луч, в пространственно-временных точках 1,3 и 5 векторы суммируются, а в точках 2 и 4 взаимно уничтожаются. Расстояние между точками 1 и 5 соответствует одному витку правой или левой спирали или длине плоской волны.

При попадании света на любую молекулу в прозрачной среде, скорость его замедляется (уменьшение скорости пропорционально показателю преломления среды), так как свет взаимодействует с электронными оболочками молекул. Степень такого взаимодействия зависит от поляризуемости молекулы.

Плоско (линейно) поляризованный световой луч (а), правый (б) и левый (в) циркулярно-поляризованные лучи, (г) - результат взаимодействия электрических векторов лучей (б) и (в), находящихся в фазе.

Если среда ахиральна, две циркулярнополяризованные составляющие проходят с одинаковой скоростью (т.е. с одинаковыми показателями преломления для правого и левого лучей). Однако хиральные молекулы проявляют анизотропию поляризуемости, которая зависит от того, левую или правую спиральность имеет циркулярнополяризованный луч. При прохождении через хиральную среду в общем случае неодинаковы не только скорости, но и коэффициенты поглощения левого и правого циркулярнополяризованных компонент плоскополяризованного света. В результате векторы для правого и левого прошедшего через образец лучей будут иметь разную амплитуду, а результирующий вектор будет описывать эллиптическую траекторию. В общем, при прохождении плоскополяризованного света через хиральную среду вектор электрического поля начинает описывать эллипс (эллиптическая поляризация) с повернутой главной осью.

Угол вращения уменьшается с увеличением длины волны падающего света. Однако это справедливо лишь для света, длина волны которого больше длины волны максимума поглощения в электронном спектре данного вещества. Изменение оптического вращения при изменении длины волны называется дисперсией оптического вращения (ДОВ). Разность поглощения правой и левой компонент называется круговым дихроизмом (КД). Количественной характеристикой КД служит угол эллиптичности y, величина которого обратно пропорциональна длине волны

КД открыт Э. Коттоном в 1911 г. и его часто называют эффектом Коттона. ДОВ и КД вместе называются хирооптическими явлениями; в своей основе они связаны с электронными переходами в хиральном окружении. Эффект Коттона, т.е. превращение плоскополяризованного света в эллиптически поляризованный заметно проявляется главным образом вблизи полос собственного (резонансного) поглощения вещества.

(а) - Взаимодействие сдвинутых по фазе компонентов равной амплитуды, (б) - взаимодействие находящихся в фазе компонентов разной амплитуды, (в) - суммарный результат сдвига по фазе.

1.2 б. Квантовая теория

Квантовую теорию оптической активности построил в 1928 г. бельгийский физик Л. Розенфельд. С позиций современной науки эта теория рассматривается как более строгая. Для объяснения оптической активности оказалось необходимым учитывать взаимодействие электрических и магнитных дипольных моментов, наведенных в молекуле полем проходящей световой волны.

1.2 в. Корпускулярная теория

В настоящее время возрождается интерес к корпускулярной теории света, которой придерживался еще Ньютон. Частицей света является фотон - реальная элементарная частица. В фотонной теории поляризацию света связывают с поляризацией фотонов, которая обусловлена наличием у этих частиц спина и его определенной направленностью в пространстве. Спиновые квантовые числа - это как бы дополнительные внутренние степени свободы частицы. В отличие от электронов, имеющих спин J = 1/2, спин фотона J = 1. (Это означает, что электроны принадлежат к классу фермионов, для которых справедлив запрет Паули, а фотоны - к классу бозонов, для которых не действует принцип запрета). Согласно квантовой механике, частица со спином J и ненулевой массой покоя имеет (2J + 1) внутренних квантовых состояний, определяющих ее поляризацию, т.е. степень асимметрии частицы в пространстве. Но масса покоя фотона равна нулю, и поэтому число спиновых состояний на единицу меньше, т.е. равно двум (+1 и - 1). Это означает, что возможны лишь две ориентации проекции спина фотона на направление его движения: параллельная и антипараллельная. В таком случае возникает понятие "спиральность частицы". Если проекция спина на направление движения положительна, то говорят, что частица имеет правовинтовую (правую) спиральность, а если отрицательна - левовинтовую (левую) спиральность. Спиральные объекты хиральны, поэтому фотоны являются как бы хиральными частицами.

Поскольку фотоны обладают целочисленным спином, в одном и том же состоянии может находится любое число фотонов. Это обусловливает возможность описания электромагнитных взаимодействий с участием большого числа фотонов в рамках классической (а не только квантовой) механики. Циркулярно-поляризованный свет можно рассматривать как поток фотонов, имеющих только правую или только левую спиральность. Плоскополяризованный свет состоит из одинакового количества "левых" и "правых" фотонов. Взаимодействие по-разному поляризованных фотонов с хиральной анизотропной средой происходит неодинаково, что приводит к хироптическим эффектам.

Ахиральная молекула не вращает плоскость поляризации света только при определенной ее ориентации по отношению к падающему лучу. Например, ахиральная молекула, имеющая плоскость симметрии, не вращает плоскость поляризации лишь в том случае, если плоскость поляризации совпадает с плоскостью симметрии. Все же остальные молекулы, не ориентированные таким образом, вращают плоскость поляризации, даже не будучи хиральными. Однако в целом образец не вращает, так как в массе молекулы ориентированы беспорядочно, и одни молекулы вращают плоскость поляризации в одном направлении, а другие молекулы, встречающиеся на пути светового луча, вращают ее в противоположную сторону. Таким образом коллектив ахиральных молекул имеет суммарное вращение, равное нулю, хотя каждая молекула может вращать плоскость поляризации. В случае хиральных соединений молекул противоположной ориентации (если это не рацемическая смесь) просто не может существовать, и вращение наблюдается.

2. Хиральные молекулы

В случае простых молекул легко проводится зрительное распознавание несовместимости с зеркальным отображением. Однако многие органические молекулы настолько сложны, что такой способ требует очень развитого пространственного воображения, которым обладают далеко не все.

2.1 Точечные группы симметрии

Шар самый симметричный объект, его не возможно отразить в зеркале. Он всегда выглядит одинаково. Тетраэдр "менее симметричен", чем шар, поскольку вокруг высоты его нужно повернуть лишь на определенный угол (1200), чтобы он выглядел так же, как до поворота. Вращение вокруг оси является одной из операций симметрии. Операцией симметрии называется действие над объектом, которое приводит к его новой ориентации, неотличимой от исходной и совмещаемой с нею.

Каждой операции симметрии соответствует определенный элемент симметрии. Элементом симметрии называется геометрическое место точек, остающихся неподвижными при данной операции симметрии. Основными элементами симметрии являются собственные оси вращения, которые в системе обозначений Шенфлиса имеют символ Cn, где n - порядок оси, означающий, что поворот молекулы на угол 2p /n радиан приводит к структуре, неотличимой от первоначальной, несобственные оси вращения или зеркально-поворотные оси (s n), зеркальные плоскости симметрии (s), делящие молекулу пополам, так, что одна половина является зеркально-симметричной другой половине, центр инверсии (i) и тождественное преобразование (Е). В соответствии с этим операции симметрии делят на поворот оси вокруг оси симметрии Сn, поворот вокруг оси с последующим отражением в плоскости, перпендикулярной этой оси (Sn), отражение в плоскости симметрии s, инверсию в центре симметрии i и операцию идентичности Е. При операции идентичности с молекулой ничего не делают, но эта операция не бессмысленна, т.к. она позволяет включить в единую классификацию как симметричные, так и асимметричные объекты.

2.1 а. Собственная ось симметрии

Все молекулы имеют тривиальную ось С1, поскольку в любом случае вращение на 3600 возвращает молекулу в исходное состояние. Следовательно, операция С1 эквивалентна операции идентичности (С1 є Е). Дихлорметан имеет ось С2, аммиак - ось С3, метан - четыре оси С3, тетрахлорплатинат - ось С4.

2.1 б. Несобственная ось симметрии

Простейшая зеркально поворотная ось S1 эквивалентна перпендикулярной ей плоскости симметрии (S1 є s). Примером является молекула хлорфторметана. Зеркально-поворотные оси более высокого порядка (Sn) можно рассматривать как комбинацию вращения на угол 2p /n с последующим отражением в плоскости, перпендикулярной оси вращения. Так, аллен и изображенный ниже изомер 1,2,3,4-тетраметилциклобутана имеет зеркально-поворотную ось S4:

1,2-Дихлор-1,2-дифторэтан обладает осью S2, которая совпадает со связью С-С. Операция S2 эквивалентна инверсии в центр симметрии, который находится посредине связи С-С (S2 є i)

Поскольку у молекул может быть не один, а несколько элементов симметрии, их удобнее классифицировать по точечной группе симметрии. Набор все операций симметрии объекта образует его группу симметрии. Если при всех этих преобразованиях остается неподвижным центр тяжести фигуры, то группа симметрии называется точечной. Известны четыре типа точечных групп симметрии.

2.1 в. Типы точечных групп симметрии

К типу 1 относятся точечные группы С1, Сs, Ci, которые не имеют нетривиальных поворотных осей, поэтому их называют неаксиальными. К типу 2 относятся группы с единственной поворотной осью. В группе Cn других элементов симметрии нет, в группе Cnv имеется n вертикальных плоскостей s n, проходящих через ось Cn, а в группе Сnh одна горизонтальная плоскость s h, перпендикулярная оси Сn. Сюда же входит группа Sn, поскольку при наличии зеркально-поворотной оси порядка n обязательно имеется и собственная ось порядка n/2 (C2 у S4, C3 у S6 и т.д.). При нечетном n оси Sn могут быть представлены как комбинации других операций. Для низших порядков S1 є s и S2 є i. Точечные группы типа 3 имеют одну ось Сn и n осей второго порядка, перпендикулярных оси Сn. Такие группы называются диэдральными. Если нет плоскостей симметрии, группа обозначается как Dn, если имеется несколько плоскостей s v (вертикальных) - Dnd, а если еще и горизонтальная плоскость s h, то группа обозначается Dnh. К типу 4 относятся точечные группы, имеющие более чем одну ось порядка выше двух. Такие группы называются кубическими. К ним относятся точечные группы правильных тетраэдра (Td), октаэдра и куба (Oh), икосаэдра и додекаэдра (Ih). Максимальную симметрию имеет шар, который принадлежит предельной группе Kh, включающей все возможные операции симметрии.

2.2 Симметричное определение хиральности

Хиральна любая истинно асимметрическая молекула, относящаяся к группе С1, не имеющая никаких элементов симметрии, кроме идентичности (и оси С1, т.к. С1 Е). Очевидно, также, что молекулы, имеющие плоскость симметрии (s) или центр симметрии (i) ахиральны, поскольку они состоят из двух одинаковых "половинок" и в зеркальном отображении левая и правая половинки преобразуются друг в друга или без поворотов (при наличии плоскости), или с поворотом на 1800 (при наличии центра инверсии). Молекулы, имеющие зеркально-поворотные оси (Sn) также совмещаются со своим зеркальным отображением, и поэтому ахиральны. Следовательно, хиральны только молекулы, относящиеся к аксиальным точечным группам Сn и Dn.

Таким образом, можно сформулировать симметрийный критерий хиральности: любая молекула, которая не имеет несобственной оси вращения Sn хиральна.

Впервые доказательство справедливости данного определения хиральных молекул получено при исследовании изомерных четвертичных аммонийных солей со спирановым атомом азота IV, V, VII и IX. Изомеры IV и V асимметричны (группа C1), изомер VII диссимметричен (группа D2). Поэтому эти три изомера должны быть хиральными. И действительно, они были получены в оптически активной форме. Однако изомер VIII относится к группе S4, т.е. ахирален, и получить его в оптически активной форме нельзя.

2.3 Типы хиральности

Адамантаны, у третичных атомов углерода которых имеется четыре разных заместителя, хиральны и оптически активны. При сравнении формул симметрия обоих соединений очень похожа. Остов адамантана можно представить как тетраэдр с "изломанными ребрами", он имеет симметрию Td которая переходит в C1, когда все четыре заместителя у третичных атомов углерода разные. У производного адамантана нет асимметрического атома углерода, как в a-бромпропионовой кислоте, но есть центр, находящийся внутри молекулы (центр тяжести незамещенного адамантана).

Асимметрический центр - это частный случай более общего понятия хиральный центр. Хиральный центр может иметь не только асимметрические молекулы, но и молекулы симметрии Cn или Dn. Хиральный центр является лишь одним из возможных элементов хиральности. Однако кроме центрального существуют еще и аксиальный, планарный и спиральный типы хиральности.

Аксиальной хиральностью обладают молекулы, имеющие хиральную ось. Хиральную ось легко получить, мысленно "растягивая" центр хиральности:

Хиральную ось имеют такие классы молекул, как аллены и дифенилы. В алленах центральный атом углерода sp-типа имеет две взаимно-перпендикулярные p-орбитали, каждая из которых перекрывается с p-орбиталью соседнего атома углерода, в результате чего остающиеся связи концевых атомов углерода располагаются в перпендикулярных плоскостях. Сам аллен хирален, так как имеет зеркально-поворотную ось S4, но несимметрично замещенные аллены типа abС=С=Сab хиральны.

Аллены хиральны только в том случае, если оба концевых атома углерода замещены несимметрично:

При любом нечетном числе кумулированных двойных связей четыре концевые группы располагаются уже не в разных, а в одной плоскости, например, для 1,2,3-бутатриена:

Такие молекулы ахиральны, но для них наблюдается цис-транс-изомерия.

Так, соединение было разделено на оптические изомеры.

Если одну или обе двойные связи симметрично замещенного аллена заменить на циклическую систему, то полученные молекулы будут тоже обладать аксиальной хиральностью, например:

В бифенилах, содержащих четыре объемистые группы в орто-положениях, свободное вращение вокруг центральной связи затруднено из-за стерических препятствий, и поэтому два бензольных кольца не лежат в одной плоскости. По аналогии с алленами, если одно или оба бензольных кольца замещены симметрично, молекула ахиральна; хиральны же молекулы только с двумя несимметрично замещенными кольцами, например:

Изомеры, которые можно разделить только благодаря тому, что вращение вокруг простой связи затруднено, называются атропоизомерами.

Иногда для предотвращения свободного вращения в бифенилах достаточно трех и даже двух объемистых заместителей в орто-положениях. Так, удалось разделить на энантиомеры бифенил-2,2-дисульфокислоту (XV). В соединении XVI свободное вращение полностью не заторможено, и, хотя его можно получить в оптически активной форме, при растворении в этаноле оно быстро рацемизуется (наполовину за 9 мин. при 250).

Для некоторых хиральных молекул определяющим структурным элементом является не центр, не ось, а плоскость. Простейшую модель планарной хиральности легко сконструировать из любой плоской фигуры, не имеющей осей симметрии, лежащих в этой плоскости, и отдельной точки вне плоскости. Наиболее изучены планарно-хиральные производные ферроцена (XVII). Другими примерами являются ареновые комплексы хромтрикарбонила (XVIII), а также соединения XIX и XX.

Спиральная хиральность обусловлена спиральной формой молекулы. Спираль может быть закручена влево или вправо, давая энантиомерные спирали. Например, в гексагелицене одна часть молекулы из-за пространственных препятствий вынуждена располагаться над другой.

3. Номенклатура энантиомеров

Определение конфигурации-это экспериментальная работа, выполняемая химическими и физическими методами с целью установить, какая из двух зеркальных пространственных моделей отвечает правовращающему энантиомеру, а какая - левовращающему. При полной определенности самой конфигурации (пространственной модели) вопрос об ее обозначении может решаться по-разному.

3.1 По конфигурации: R - и S

Система R/S - наиболее важная номенклатурная система для характеристики энантиомеров. По этой системе, центр хиральности называется R или S в соответствии с системой, по которой каждое замещающее звено наделяется приоритетом в соответствии с правилами Кана-Инголда-Прелога, основываясь на атомном номере. Если центр ориентирован так, что низший из возможных четырёх направлен от наблюдателя, наблюдатель увидит два возможных варианта: если приоритет оставшихся трёх замещающих групп уменьшается по часовой стрелке, название даётся R (Rectus), если уменьшается против часовой стрелки, то S (Sinister). Эта система маркирует каждый хиральный центр молекулы (и также имеет распространение на хиральные молекулы, не затрагивая хиральных центров). Несмотря на это, она более обобщённа, чем система D/L, и может, например, наименовать изомер, в котором (R,R) - группа расположена напротив (R,S) - диастереомер. У системы R/S нет отношения к (+/-) - системе. R-изомер может быть правоповоротным, так и левоповоротным, в зависимости от фактических замещающих групп. У системы R/S нет и отношения к D/L системе. По этой причине система D/L остаётся в повседневном использовании

3.2 По оптической активности: +/-

Энантиомер именуется по направлению света, в котором вращает плоскость поляризованного света. Если вращение происходит по часовой стрелке (по отношению к наблюдателю, к которому направляется свет), то в названии энантиомера отмечается (+). Его зеркальный образ именуется (-). (+) - и (-) - изомеры также определяются как D - и L соответственно (от англ. Dextrorotatory - правоповоротный и Levorotatory - левоповоротный).

3.3 По конфигурации: D - и L-

Оптический изомер может быть назван по пространственной конфигурации его атомов. Система D/L делает это, опираясь на молекулу глицераля. Сам по себе глицераль хирален, и два его изомера именуются D и L. С глицералем можно провести определённые химические манипуляции без изменения конфигурации, и его историческое использование с этой целью (в совокупности с удобством его использования как одной из наименьших широко используемых хиральных молекул) вылилось в его использование в номенклатуре. В этой системе составные части называются по аналогии с глицералем, который, в общем, производит недвусмысленные обозначения, да к тому же и легче всего увидеть в маленьких биомолекулах, похожих на глицераль. Маркировка D/L не относится к (+) / (-) никаким образом; она не указывает, какой энантиомер правоповоротный, какой - левоповоротный. Однако она сообщает, что стереохимия соединений имеет отношение к тому, что из право - или левоповоротного энантиомеров глицераля правоповоротный будет D-изомером. Общая закономерность для определения D/L изомерии аминокислот называется правилом “CORN”. Группы COOH, R, NH2 и H (где R - отличная от других углеродная цепь) выстраиваются вокруг атома углерода хирального центра. Когда смотреть так, чтобы атом водорода был направлен вдаль от наблюдателя, если эти группы расположены по часовой стрелке вокруг атома углерода, то это D-форма. Если против часовой, то L-форма.

4. Методы определения конфигурации

4.1 Определение абсолютной конфигурации

Для определения абсолютной конфигурации применяются два метода: экспериментальное исследование аномальной дифракции рентгеновских лучей на ядрах тяжелых атомов и теоретический расчет величины оптического вращения.

4.1 а. Дифракция рентгеновских лучей

Благодаря тому, что рентгеновские лучи при прохождении через кристаллы дают дифракционную картину, метод рентгено-структурного анализа (РСА) широко используется для установления строения химических соединений. Когда дифракция происходит на электронных оболочках легких атомов (C,H,N,O,F,Cl), характер наблюдаемой интерференциальной картины определяется только наличием самих ядер, но не их природой. Это объясняется тем, что легкие атомы лишь рассеивают рентгеновские лучи, но не поглощают их, и поэтому в ходе эксперимента не происходит изменения фазы рассеянного излучения.

Тяжелые атомы не только рассеивают, но и поглощают рентгеновские лучи в определенных областях кривой поглощения. Если длина волны падающего излучения совпадает с начальным слабо поглощающим участком этой кривой, то наблюдается не только обычная дифракция, но также и некоторый сдвиг по фазе рассеянного излучения, обусловленный тем, что часть его поглощается. Это явление называется аномальным рассеянием рентгеновских лучей. При наличии лишь легких атомов РСА позволяет определить межъядерные расстояния между связанными и несвязанными атомами и на их основе сделать выводы о строении данной молекулы и о наличии в ней хиральных элементов. В этом случае различить энантиомеры нельзя. Однако при наличии тяжелых атомов характер аномального рассеяния зависит не только от расстояния между атомами, но и от относительного расположения в пространстве. Явление аномальной дифракции рентгеновских лучей позволяет непосредственно определить абсолютные конфигурации молекул, содержащих тяжелые атомы, а также молекул, в которые тяжелые атомы могут быть введены в качестве специальных меток. Впервые такой анализ был проведен Бейфутом в 1951 г. В настоящее время с помощью РСА определена абсолютная конфигурация нескольких сотен соединений.

4.1 б. Теоретический расчет оптического вращения

В 1952 г был опубликован квантово-химический расчет оптического вращения знантиомеров на примере транс-2,3-эпоксибутана (XXX). Конфигурация этого эпоксида может быть скоррелирована с конфигурацией винной кислоты и далее с глицериновым альдегидом. При этом снова обнаружилось, что ранее произвольно выбранная стереоформула D-глицеринового альдегида совершенно правильна и нет необходимости изменять принятое в литературе в течение многих лет изображение этой конфигурации.

4.2 Определение относительной конфигурации

При определении относительной конфигурации соединение с неизвестной конфигурацией соотносят с другим соединением, конфигурация которого уже известна.

4.2 а. Химическая корреляция

Первая группа методов связана с превращением соединения с неизвестной конфигурацией в соединение с известной конфигурацией или образованием неизвестной конфигурации из известной без нарушения хирального элемента, например, хирального центра. Поскольку в ходе превращения хиральный центр не затрагивается, очевидно, что продукт должен иметь ту же конфигурацию, что и исходное соединение. При этом вовсе не обязательно, что если неизвестное соединение относится к (R) - ряду, то и известное будет иметь (R) - конфигурацию. Например, при восстановлении (R) - 1-бром-2-бутанола в 2-бутанол, не затрагивающем хиральный центр, продуктом будет (S) - изомер несмотря на то, что его конфигурация не изменилась. Это связано с тем, что группа СH3CH2 определению младше группы BrCH2, но старше группы СН3.

Одним из многих примеров химической корреляции является установление относительной конфигурации D-галактозы (XXXI) путем ее окисления. Поскольку этот процесс приводит к образованию оптически неактивной дикарбоновой кислоты, относительная конфигурация ее четырех хиральных центров может соответствовать или структуре XXXII, или структуре XXXIII. Но дикарбоновая кислота (XXXIV), полученная из галактозы путем окислительного отщепления альдегидного атома углерода, оптически активна. Следовательно, D-галактоза имеет относительную конфигурациию, показанную формулой XXXI.

Подобным путем можно выяснить лишь относительную конфигурацию исследуемых молекул, но не их абсолютные конфигурации.

Вторая группа методов химической корреляции основана на превращении при хиральном центре, механизм которого точно известен. Так, реакция SN2 происходит с обращением (инверсией) конфигурации реакционного центра. С помощью последовательности таких реакций конфигурация (+) - молочной кислоты была скоррелирована с конфигурацией (S) - (+) - аланина.

К третьей группе относятся биохимические методы. В ряду одного класса соединений, например, аминокислот, определенный фермент атакует молекулы только одной конфигурации. Если какой-то фермент, скажем, атакует только (S) - аминокислоты, не трогая (R) - форму, и это экспериментально установлено на ряде примеров, то еще одна аминокислота, подвергающаяся действию того же фермента, должна принадлежать к (S) - ряду.

4.2 б. Установление относительной конфигурации с помощью физических методов

Наиболее широко используют хироптические методы (ДОВ и КД) и спектроскопию ЯМР. Использования хироптических методов для установления конфигурации заключается в сравнении параметров ДОВ и КД в сериях похожих соединений. Эксперимент показал, что знаки эффекта Коттона для этих двух соединений противоположны, но форма и интенсивность спектральных кривых одинакова. Другими словами, кривые ДОВ и КД зеркально-симметричны, и следовательно соединения XXXV и XXXVI можно рассматривать как квазиэнантиомеры в хироптическом (но не в истинно структурном) смысле термина. В приведенном примере Уф - поглощение обусловлено карбонильным хромофором, который ахирален. Тем не менее, наличие хирального окружения оказывает хиральное возмущающее действие на электронный переход группы С=О, позволяя установить относительные конфигурации.

При определении относительных конфигураций методом ЯМР обычно используют химические сдвиги и константы спин-спинового взаимодействия. Так, например, в 1,3-дитиане (XVII) экваториальные атомы водорода в положении 2 имеют значительно более высокий химический сдвиг, чем в аксиальном положении, на основании чего легко определить конфигурацию 2-замещенных дитианов.

Константы спин-спинового взаимодействия (J) у вицинальных протонов в этановом фрагменте коррелируют с величинами соответствующих двугранных углов j:

На этом основании можно определить конфигурацию, но только в рядах структурно-родственных соединений, так как величина J зависит также и от природы заместителей.

Еще один способ основан на явлении изменения химических сдвигов под влиянием лантанидных комплексов, которые называются сдвигающими реагентами. Известно, что шестикоординационные хелатные комплексы некоторых парамагнитных лантанидов (например, b - дикетонат европия XXXVIII) могут увеличивать координационное число до 8 путем образования неустойчивых ассоциатов с полярными электронно-донорными группыми типа C=O, OH, NH2 и др. Это приводит к сильному изменению величины химсдвигов ядер близко расположенных к координирующему атому. Таким путем можно, например, отличить экзо - и эндо-изомеры борнеола (XXXIX).

Конфигурацию гомологов можно определить просто по знаку оптического вращения. В гомологических рядах вращение обычно меняется постепенно и в одном направлении, поэтому, если известна конфигурация достаточного числа членов данного ряда, конфигурацию остальных можно установить экстраполяцией.

5. Методы разделения энантиомеров

Операции разделения рацемических смесей на составляющие их оптически активные компоненты называются расщеплением. Отношение экспериментально наблюдаемого удельного вращения вещества, полученного путем расщепления, к удельному (абсолютному вращению чистого энантиомера называется оптической чистотой (Р). Тождественными оптической чистоте являются понятия энантиомерной чистоты или энантиомерного избытка (э. и.).

где Е - мольная доля энантиомера, находящегося в избытке, Е* - мольная доля другого энантиомера.

Любой процесс получения оптически активного вещества из оптически неактивного предшественника, в том числе и расщепление рацемических смесей, называется оптической активацией. Общим принципом всех процессов оптической активации является создание в той или иной форме диастереомерных взаимодействий.

5.1 Расщепление через диастереомеры

Этот метод до настоящего времени использовался наиболее часто. Если рацемическое соединение содержит карбоксильную группу, то можно получить соль с оптически активным основанием. Если же рацемат содержит аминогруппу, то можно получить соль с оптически активной кислотой. Допустим, что оптически активный реагент (в данном случае основание или кислота) имеет (S) - конфигурацию. Тогда образующиеся соли будут смесью (R) - и (S) - диастереомеров, и в отличие от энантиомеров их свойства будут уже различаться.

На практике чаще всего применяют кристаллизацию, используют различие в растворимости двух диастереомеров. В настоящее время все чаще применяют хроматографические методы. На последней стадии из соли выделяют знантиомер.

Для разделения рацемических кислотных соединений применяют природные оптически активные основания, которые называются алкалоидами, например, бруцин, эфедрин, стрихнин, хинин, цинхонин, морфин и др. После проведения разделения их регенерируют и используют снова. Однако эти вещества сильно токсичны и поэтому их стремятся заменить синтетическими оптически активными аминами, например, a - фенилэтиламином. Например, таким путем расщепляется рацемическая 3-метил-2-фенилбутановая кислота.

Для разделения рацемических основных соединений применяют оптически активные кислоты: винную, миндальную, аспарагиновую (аминоянтарную), глутаминовую (a - аминоглутаровую), камфорсульфоновую и др.

Если молекула не содержит кислотной или основной группировки, то ее можно сначала ввести, а затем после разделения на энантиомеры снять, например,

Диастереомеры могут образовываться не только в результате взаимодействий кислот и оснований Бренстеда, но также и в реакциях, в которых взаимодействуют кислоты и основания Льюиса. Так, при расщеплении ароматических соединений, в состав которых не входит ни кислотные, ни основные группировки (например, хиральных нафтиловых эфиров), может быть использована их способность образовывать p - комплексы с нитрофлуореном. Для этой цели используют реагент (XLI), в котором элекктроноакцепторные тетранитрофлуореноноксимная группа придает ей способность к комплексообразованию с электронодонорными ароматическими кольцами, а фрагмент энантиомерной молочной кислоты обеспечивает реагенту в целом оптическую активность. Другим примером является расщепление транс-циклооктена путем образования комплекса с солью двухвалентной платины (кислота Льюиса), вторым лигандом у которой является молекула (R) - a - фенилэтиламина (XLII).

5.2 Хроматографическое расщепление

Если рацемичеcкую смесь хроматографировать на колонке, заполненной хиральными веществами, энантиомеры должны проходить с разными скоростями и, следовательно, их можно разделить. Таким путем, например, миндальную кислоту разделяют на колонке, заполненной крахмалом. Можно использовать бумажную, колоночную, газовую и жидкостную хроматографию.

5.3 Механическое расщепление

В случае рацемической натрийаммониевой соли винной кислоты энантиомеры при температуре ниже 270 (температура очень важна) кристаллизуются раздельно: в одном кристалле собираются (+) - изомеры, а в другом (-) - изомеры. Такие кристаллы отличаются друг от друга зеркальностью формы, и их можно разделить с помощью пинцета и микроскопа. Именно таким путем Л. Пастер в 1848 г. впервые доказал, что рацемическая винная кислота в действительности представляет собой смесь (+) - и (-) - изомеров.

Однако такого рода кристаллизация свойственна лишь немногим веществам. Описано, например, расщепление гептагелицена (смесь спирально сочлененных бензольных колец; аналог гексагелицена -). Один из энантиомеров этого соединения, имеющий необычно высокое оптическое вращение ([a] D20= +62000) спонтанно выкристаллизовывается из бензола.

При аналогичном расщеплении 5-метил-3,3-диэтил-2,4-пиперидиндиона (XLIII) было взято 20 кг рацемата и после 400 перекристаллизаций получено всего 3 г оптически чистого правовращающего изомера. Одним из немногих соединений, которые можно разделить пинцетом по методу Пастера является 1,1,-динафтил (XLIV). При нагревании рацемата при 76-1500 происходит фазовое изменение с образованием лево - и правовращающих кристаллов.

5.4 Ферментативное расщепление

Довольно часто для получения оптически активных веществ из рацематов используют ферменты, которые обладают высокой стереоспецифичностью действия. Наибольшее значение метод приобрел для стереоспецифического гидролиза N-ациламинокислот. Под действием фермента ацилазы на рацемическую N - ацетиламинокислоту L-изомер гидролизуется в 1000 раз быстрее D-изомера, и после окончания ферментативной реакции легко можно разделить L-аминокислоту и D-ацетиламинокислоту.

5.5 Установление оптической чистоты

В большинстве случаев при расщеплении рацематов получаются энантиомеры, не имеющие 100% -ной оптической чистоты. Для установления содержания в них второго энантиомера применяют по сути дела те же методы, что и для расщепления, с той лишь разницей, что в данном случае образующиеся диастереомерные комплексы не разделяют, а тем или иным способом определяют их концентрацию. Относительные концентрации диастереомеров можно определить любым способом, например, с помощью ГЖХ или ЯМР-спектроскопии.

Заключение

Опти́ческая изомери́я - разновидность пространственной изомерии, являющаяся прямым следствием хиральности молекул, проявляется способностью некоторых веществ поворачивать плоскость поляризованного луча в противоположные стороны. Оптическая изомерия свойственна молекулам органических веществ, не имеющим плоскости симметрии, которые относятся друг к другу как предмет к своему зеркальному отражению.

Два стереоизомера, относящиеся друг к другу как предмет к своему зеркальному отражению, не совместимому с оригиналом, называются энантиомерами, и каждая из этих структур является хиральной.

Существование двух энантиомеров (хиральность) обусловлено атомом, имеющим различные заместители. Такой асимметрический атом называют стереоцентром или стереогенным центром. Применяются также названия хиральный или асимметрический центр.

Смесь равных количеств обоих энантиомеров называется рацемической формой. Некоторые характеристики энантиомеров, например растворимость и реакционная способность, одинаковы только при ахиральном окружении, если же энантиомер окружен хиральными молекулами, реакционная способность двух энантиомеров будет различаться.

Энантиомеры различаются также при прохождении луча плоско поляризованного света через их растворы. Для каждой пары энантиомеров луч отклоняется на один и тот же угол, но в разные стороны (направо или налево), что обозначается знаками "+" и "-" или d и l. По этой причине стереоизомеры такого типа иногда называют оптическими изомерами.

В обычных химических реакциях, приводящих к образованию энантиомеров, получаются их равные количества (рацемическая форма). Рацемическая смесь не обладает оптической активностью. Если же химическая реакция проводится в хиральной среде или в присутствии хирального катализатора, то получают продукты с преобладанием (иногда полностью) одного энантиомера.

Наличие оптической изомерии может быть обусловлено также наличием стереогенной оси или плоскости.

Если молекула содержит более одного стереогенного центра, то число оптических изомеров определяют по формуле 2n, где n - число стереогенных центров. Стереоизомеры, не являющиеся энантиомерами, называются диастереомерами.

Операции разделения рацемических смесей на составляющие их оптически активные компоненты называются расщеплением. Отношение экспериментально наблюдаемого удельного вращения вещества, полученного путем расщепления, к удельному (абсолютному вращению чистого энантиомера называется оптической чистотой (Р). Тождественными оптической чистоте являются понятия энантиомерной чистоты или энантиомерного избытка. Существует несколько способов разделения: расщепление через диастереомеры, хроматографическое расщепление, механическое расщепление, ферментативное расщепление и установление оптической чистоты.

Литература

1. Аблесимов Н.Е. Синопсис химии: Справочно-учебное пособие по общей химии. - Хабаровск: Изд-во ДВГУПС, 2005.

2. Бакстон Ш., Робертс С. введение в стереохимию органических соединений. - М.: Мир, 2005.

3. Вайлен С. Дойл М. Илиел Э. Бином. Лаборатория знаний - 2007.

4. Ельницкий А.П. Номенклатура органических соединений. Мн.: Сэр-Вит, 2003

5. Илиэл Э. Основы стереохимии. М.: Мир, 1971.

6. Ким А. М Органическая химия: Учеб. пособие. - 3-е изд., испр. и доп. - Новосибирск: Сиб. унив. изд-во, 2002

7. Ногради М. Стереохимия. - М.: Мир, 1984.

8. Папулов Ю.Г. Статистическая стереохимия и конформационный анализ. Калинин: КГУ, 1978.

9. Потапов В.М., Стереохимия, М., 2009.

10. Основы стереохимии (пер. с англ. Демьянович В. М.) Изд.2-е

11. Реутов О.А., А.Л. Курц, К.П. Бутин "Органическая химия. Углубленный курс " 1999.

12. Реутов О.А., А.Л. Курц, К.П. Бутин "Органическая химия" - М., 2007 - Ч.2

13. Соколов В.И. Введение в теоретическую стереохимию. - М.: Наука, 1982.

14. Травень В.Ф., Баберкина Е.П., Сафронова О.Б., Шкилькова В.Н. - Стереохимия. Учебное пособие - Москва: РХТУ, 1999.

15. Черних В. П, та ін. Органічна хімія / В.П. Черних, Б, С. Зименковський, І.С. Гриценко: Підручник для фарм. вузів і факультетів. У 3 кн.: Кн.1. Основи будови органічних сполук. - Вид-во "Основа" при Харк. ун-ті. 2000 р.

Изомерия – это явление, обусловленное существованием молекул, имеющих одинаковый качественный и количественный состав, но различающихся по химическим и физическим свойствам вследствие неодинакового расположения атомов (или групп атомов) в молекуле или их ориентации в пространстве.

Известно, что свет представляет собой электромагнитные волны, фаза колебания которых, перпендикулярна направлению их распространения. В естественном свете такие колебания происходят во всех возможных плоскостях. Если же луч света пропустить через кристалл, имеющий строго упорядоченное строение (рис 1), то электромагнитные колебания будут совершаться только в одной определенной плоскости. Свет, фаза колебания которого вне этой плоскости, призмой задерживается. Такой луч света называется поляризованным (плоскополяризованным). Плоскость, перпендикулярная плоскости колебаний поляризованного света, является плоскостью поляризации. Обычно в качестве стереорегулярого кристалла используют так называемую призму Николи.

Рис. 1. Схематическое изображение электромагнитных колебаний в луче обыкновенного и поляризованного света; 1 - в обыкновенном свете; 2 - в поляризованном свете; 3 - плоскость поляризации; 4 - призма Николя

Оптически активные соединения «вращают» плоскость поляризации вправо или влево (рис.2). Для обозначения этих вращений используют знаки (+) и (-), которые ставят перед формулой оптического изомера.

Рис. 2. Изменение плоскости поляризации при прохождении поляризованного света через оптически активные вещества: 1 - оптически активное вещество, 2 - первоначальная плоскость поляризации, повернутая на угол α после прохождения света через оптически активное вещество.

Оптическая (зеркальная) изомерия

Оптическая (зеркальная) изомерия обусловлена пространственной асимметрией молекул. Такие молекулы при одинаковом химическом строении не могут быть совмещены в пространстве ни при каких поворотах, подобно тому, как нельзя совместить правую и левую руки. Молекулы, обладающие оптической изомерией, как правило, имеют центр асимметрии. Этот центр называют асимметрическим или хиральным. Хиральный центр имеют соединения содержащие атом углерода в состоянии sp 3 -гибридизации, который содержит четыре разных заместителя: Xabcd.

Заметим что, асимметрические центры могут возникать не только у атома углерода, но и у других атомов, например, серы, азота, фосфора, кремния и т.д. Во многих случаях асимметричными являются молекулы комплексных соединений. При этом, в ряде случаев, роль одного из "заместителей" выполняет неподеленная пара электронов.

Пример оптически активного соединения – молочная кислота :

В молекуле молочной кислоты имеется хиральный центр, поэтому существуют два пространственных изомера, являющиеся зеркальными изомерами. Два стереоизомера, относящиеся друг к другу как предмет и его зеркальное отражение, называют антиподами, или энантиомерами. Антиподы отличаются только знаком оптического вращения.

По системе Фишера-Розанова конфигурации оптических изомеров подразделяют на два ряда: D и L. Необходимо помнить, что обозначения D и L не имеют ничего общего с направлением вращения плоскополяризованного света (правовращающий изомер можно обозначить буквой «d », а левовращающий – буквой «l », но не прописными буквами).

Если в стандартной проекционной формуле Фишера ОН-группа (или NH 2 для аминокислот) стоит справа, то данный стереоизомер относят к D ряду, если слева, то к L-ряду.

Правила работы с проекционными формулами Фишера

Нечётное количество перестановок (1, 3 …) или поворот на 90° (270 0) меняют конфигурацию на противоположную.

Чётное количество перестановок (2, 4 …) или поворот на 180° не меняют конфигурацию.

Пример:

Взаимная перестановка любых двух групп в проекциях Фишера приводит к превращению энантиомера в его зеркальное отображение:

D,L- номенклатуру продолжают применять для аминокислот, углеводов и многих других природных соединений. Однако данная система имеет ряд недостатков и в настоящее время для описания конфигураций новых соединений не применяется, а вместо нее используют систему Кана-Ингольда-Прелога (R,S-стереохимическая номенклатура).

Система Кана – Ингольда – Прелога. R,S-обозначение конфигураций

Для описания абсолютных конфигураций в настоящее время используется система Кана-Ингольда-Прелога (Р. Кан, Д. Ингольд и В. Прелог, 1966) или R-S – система обозначений пространственной конфигурации соединений, в которой R обозначает правый (rectus), а S – левый (sinister). Обозначения R и S помещают в скобках перед названием структуры. Следует понимать, что обозначения абсолютных конфигураций, не связаны какой то зависимостью с физическим явлением - вращением плоскополяризованного луча, то есть знак + или – может стоять у значка R или S. Вместе с тем, изображенная в соответствии с этими правилами абсолютная конфигурация должна точно соответствовать истинному строению данной молекулы, подтвержденному экспериментальными данными.

Возьмем соединение Xabcd содержащее один асимметрический центр X. Чтобы установить его конфигурацию, четыре заместителя у атома X следует пронумеровать и расположить в ряд в порядке уменьшения старшинства 1>2>3>4.

Заместители рассматриваются наблюдателем со стороны, наиболее удаленной от самого младшего заместителя (обозначенного номером 4). Если при этом направление убывания старшинства остальных заместителей (младший не учитывается) 1®2®3 совпадает с движением по часовой стрелке, то конфигурация данного асимметрического центра обозначают символом R, а если против часовой стрелки – символом S.

Определение порядка старшинства заместителей при асимметрическом атоме

(данное правило применимо и для анализа других изомеров, где необходимо рассмотреть старшинство заместителей, в частности для анализа конформаций и диастереомеров)

1. Отмечают атомный номер каждого из атомов, непосредственно присоединенных к рассматриваемому асимметрическому атому углерода.

2. Располагают эти атомы в порядке убывания атомного номера. Предпочтение по старшинству отдается атомам с более высокими атомными номерами. Если номера одинаковы (в случае изотопов), то более старшим считается атом с наибольшей атомной массой. Самый младший «заместитель» - неподеленная электронная пара. Таким образом, старшинство возрастает в ряду: неподеленная пара

3. Если с асимметрическим атомом непосредственно связаны два, три, все четыре одинаковых атома, порядок устанавливается по атомам второго пояса, которые связаны уже не с хиральным центром, а с теми атомами, которые имели одинаковое старшинство. Порядок старшинства часто встречающихся заместителей у асимметрического углерода следующий: I, Br, Cl, SH, OH, NO 2 , NH 2 , COOR, COOH, CHO, CR 2 OH, CHOHR, CH 2 OH, C 6 H 5 , CH 2 R, CH 3 , H.

4. Заместитель с R-конфигурацией имеет преимущества перед заместителем с S-конфигурацией.

5. Кратные связи рассматриваются как несколько простых связей. Например, карбоксильную группу представляют как две связи C-O, двойную связь в алкенах – как две связи C-C, тройную связь – как три связи C-C, а нитрильную группу – как три связи C-N.

В этом соединении асимметрический атом связан с атомом хлора и тремя атомами углерода. Поскольку хлор имеет больший атомный номер, он является самым старшим. Для того чтобы расположить по старшинству остальные три заместителя, поступают следующим образом.

Выделяют "слои" атомов, постепенно удаляющиеся от асимметрического атома:

Так как атомы первого слоя одинаковы, переходят ко второму слою и рассматривают тройки атомов. Можно использовать такую запись троек атомов второго слоя, связанных с атомами углерода первого слоя: С(F,H,H), C(Cl,H,H), C(Br,H,H). Выделяют старший атом в каждой тройке и сравнивают их старшинство: F < Cl < Вr.

В таком же порядке изменяется и старшинство заместителей, в состав которых входят данные атомы.

Диастереомерия σ-Диастереомерия

Число стереоизомеров соединений с двумя и более асимметрическими центрами можно рассчитать по формуле: N=2 n , где N - число стереоизомеров,а n – число асимметрических атомов.

При рассмотрении 2-фтор-3-хлор-4-бромпентана можно убедиться, что количество изомеров 2 3 равно 8.

Пример:

Существует четыре стереоизомера для молекул с двумя асимметрическими атомами углерода, которые показаны на рисунке, на примере 3-хлорбутанола-2 -СН 3 СНОНСНСlCH 3 . Возникает ситуация когда молекулы в каждой паре изомеров А и В являются энантиомерами (оптическими изомерами). Если же мы сравним любой из изомеров группы А с любым стереоизомером группы В, то обнаружим, что они не являются зеркальными антиподами. Пространственные изомеры, не являющиеся энантиомерами по отношению друг к другу, называются диастереомерами . σ- Диастереомеры, в отличие от энантиомеров имеют различные физико-химические свойства и, как правило, отличающиеся химические свойства.

Любой из энантиомеров А является диастереомером по отношению к энантиомерам В

Могут реализоваться случаи, когда число изомеров меньше предсказываемого формулой 2 n . Такие случаи встречаются, когда в структуре существуют одинаковые асимметрические центры, то есть центры с одинаковым набором атомов или групп атомов, например, в 2,3-дибромбутане:

Молекулы I и II хиральны. Нетрудно видеть, что проекции III и IV изображают одно и то же соединение: эти проекции полностью совмещаются друг с другом при повороте на 180° в плоскости листа. В проекциях III и IV легко обнаруживается плоскость симметрии, перпендикулярная центральной С-С-связи и проходящая через ее середину. В данном случае проекции III и IV содержат асимметрические центры, но не обладают хиральностью, то есть проекции III и IV это одна и та же молекула, перевернутая на 180°. Вещества, состоящие из таких молекул, называют мезо -формами. Мезо -форма не способна вращать плоскость поляризации света, то есть она оптически неактивна.

Согласно определению, любой из энантиомеров I и II является σ- диастереомером по отношению к мезо -форме, то есть они отличаются физико-химическими и химическими свойствами.

Эритро-трео обозначения σ-диастереомеров

В некоторых случаях для обозначенияσ-диастереомеров используются традиционно применяющиеся в стереохимии дескрипторыэритро - и трео -. При этом сравнивают расположение одинаковых заместителей при двух асимметрических атомах в проекции Фишера. Стереоизомеры, в которых одинаковые заместители при асимметрических атомах углерода расположены по одну сторону от вертикальной линии, называют эритро-изомерами . Если такие группы находятся по разные стороны от вертикальной линии, то говорят о трео-изомерах . В изомерах 3-хлорбутанола-2 (I) -(IV) такими реперными группами являются атомы водорода, и эти соединения получают следующие названия:

Приставки эритро - и трео - происходят от названий углеводов: треозы и эритрозы.

В случае соединений с большим числом асимметрических центров иногда применяют другие стереохимические дескрипторы, также происходящие от названий углеводов (рибо -, ликсо -, глюко - и т.п.).

Диастереомерия соединений содержащих кратные связи. π-Диастереомерия

Геометрическая изомерия – это стереоизомерия, обусловленная различным расположением заместителей вокруг двойных связей. Если оба заместителя располагаются по одну сторону от двойной связи, то это цис -изомер, если по разные строны, то это транс-изомер. Транс -измеры энергетически более устойчивы вследствие наименьшего взаимного отталкивания заместителей. Отметим, что геометрических изомеров не образуют соединения у который двойная связь располагается у концевого атома углерода. Пример:

Сложнее ситуация когда в алкене различные заместители. В современной номенклатуре правила последовательного старшинства применимы также и к описанию геометрических изомеров непредельных соединений. Заместители у каждого конца кратной связи при установлении старшинства должны рассматриваться отдельно. Если заместители, имеющие более высокое старшинство, расположены с одной и той же стороны двойной связи, соединению присваивают префикс Z (от немецкого zusammen – вместе), а если по разным сторонам, то префикс E (entgegen – напротив).

Фторхлорбромпропилен

Z , E -Номенклатура распространена и на прочие геометрические изомеры, в которых π-диастереомерия определяется наличием C=N –связи или к примеру C=P-связи. В качестве четвертого заместителя рассматривают n-электроны на атоме азота (нольвалентный заместитель).

Цис,транс -изомерия, а также и син,анти -изомерия распространена в химии не только на соединения с кратными связями, но и на циклические и каркасные соединения.

Пример решения задачи

Молекулы промышленно важного углеводорода А (D H 2 = 13) в присутствии катализаторов образуют различные олигомеры:

1. Напишите структурные формулы А E , учитывая, что
M A : M B : M C : M D : M E = 1: 2: 3: 3: 4.

Из углеводородов А и В были получены изомерные углеводороды I VI согласно приведенной ниже схеме превращений:

2. Напишите структурные формулы I V , F О . чтите, что превращения F в G и K в L – изомеризации. Помните, что разные буквы не могут обозначать одно и то же вещество.

Решение задачи

  1. Для упрощения расчета составим таблицу, обозначив как а – общий объем алкенов в исходной смеси:

Конечный объем смеси = 0,25а + (7,17 − 1,75а ) + 0,75а = 5,15. Тогда а = 2,693 л » 2,7 л.

2. М (C n H 2 n ) = 10,1 / (2,7 / 22,4) = 84, то есть молекулярная формула C 6 H 12 .

3. Молекулы С содержат асимметрический атом углерода, то есть атом с четырьмя разными заместителями. Для алкенов C 6 H 12 это возможно лишь для 3-метилпентена-1:

При гидрировании С превращается в 3-метилпентан. Существует еще только 2 структурно изомерных алкена, также образующих этот продукт в ходе гидрирования:

На основании результата взаимодействия алкенов с HBr невозможно различить А и В , поскольку, согласно условию, основным продуктом в реакциях всех трех углеводородов является бромид Е . Однако взаимодействие с HBr в присутствие перекиси (ROOR ) протекает против правила Марковникова и приводит к образованию разных продуктов:

Бромид С1 под действием основания отщепляет HBr , превращаясь обратно в С .Точно так же, в третьем варианте отщеплениеHBr возможно единственным способом с образованием исходного алкена. Следовательно, это соединение А1 .ЭлиминированиеHBr возможно двумя путями только для продукта второй реакции:

Путь а – это обычное элиминирование по правилу Зайцева. Он приводит к образованию исходного алкена. Путь b – элиминирование «по Гофману». Протекание элиминирования по этому пути объясняется тем, что трет -бутилат калия – объемное основание. Поэтому атака на более стерически доступный атом водорода СН 3 группы протекает быстрее, чем атака на менее доступный водород группы СН. Итак, структуры соединений:

Основной продукт взаимодействия А , В и С с HBr имеет структуру:

Это результат обычного электрофильного присоединения HBr к А или В по правилу Марковникова. Из С соединение Е получается в результате перегруппировки первоначально образующегося вторичного карбокатиона в более устойчивый третичный:

4. Геометрические изомеры возможны для В :