Open
Close

Метод валентных связей вс. Донорно-акцепторный механизм образования ковалентной связи

3.4. Метод молекулярных орбиталей

Метод молекулярных орбиталей (МО) наиболее нагляден в его графической модели линейной комбинации атомных орбиталей (ЛКАО). Метод МО ЛКАО основан на следующих правилах.

1. При сближении атомов до расстояний химических связей из атомных орбиталей (АО) образуются молекулярные.

2. Число полученных молекулярных орбиталей равно числу исходных атомных.

3. Перекрываются атомные орбитали, близкие по энергии. В результате перекрывания двух атомных орбиталей образуются две молекулярные. Одна из них имеет меньшую энергию по сравнению с исходными атомными и называется связывающей , а вторая молекулярная орбиталь обладает большей энергией, чем исходные атомные орбитали, и называется разрыхляющей .

4. При перекрывании атомных орбиталей возможно образование и -связи (перекрывание по оси химической связи), и -связи (перекрывание по обе стороны от оси химической связи).

5. Молекулярная орбиталь, не участвующая в образовании химической связи, носит название несвязывающей . Ее энергия равна энергии исходной АО.

6. На одной молекулярной орбитали (как, впрочем, и атомной) возможно нахождение не более двух электронов.

7. Электроны занимают молекулярную орбиталь с наименьшей энергией (принцип наименьшей энергии).

8. Заполнение вырожденных (с одинаковой энергией) орбиталей происходит последовательно по одному электрону на каждую из них.

Применим метод МО ЛКАО и разберем строение молекулы водорода. Изобразим на двух параллельных диаграммах энергетические уровни атомных орбиталей исходных атомов водорода (рис. 3.5).

Видно, что имеется выигрыш в энергии по сравнению с несвязанными атомами. Свою энергию понизили оба электрона, что соответствует единице валентности в методе валентных связей (связь образуется парой электронов).
Метод МО ЛКАО позволяет наглядно объяснить образование ионов и , что вызывает трудности в методе валентных связей. На -связывающую молекулярную орбиталь катиона переходит один электрон атома H с выигрышем энергии (рис. 3.7).

В анионе на двух молекулярных орбиталях необходимо разместить уже три электрона (рис. 3.8).

Если два электрона, опустившись на связывающую орбиталь, дают выигрыш в энергии, то третьему электрону приходится повысить свою энергию. Однако энергия, выигранная двумя электронами, больше, чем проигранная одним. Такая частица может существовать.
Известно, что щелочные металлы в газообразном состоянии существуют в виде двухатомных молекул. Попробуем убедиться в возможности существования двухатомной молекулы Li 2 , используя метод МО ЛКАО. Исходный атом лития содержит электроны на двух энергетических уровнях – первом и втором (1s и 2s ) (рис. 3.9).

Перекрывание одинаковых 1s -орбиталей атомов лития даст две молекулярные орбитали (связывающую и разрыхляющую), которые согласно принципу минимума энергии будут полностью заселены четырьмя электронами. Выигрыш в энергии, получаемый в результате перехода двух электронов на связывающую молекулярную орбиталь, не способен компенсировать ее потери при переходе двух других электронов на разрыхляющую молекулярную орбиталь. Вот почему вклад в образование химической связи между атомами лития вносят лишь электроны внешнего (валентного) электронного слоя.
Перекрывание валентных 2s -орбиталей атомов лития приведет также к образованию одной
-связывающей и одной разрыхляющей молекулярных орбиталей. Два внешних электрона займут связывающую орбиталь, обеспечивая общий выигрыш в энергии (кратность связи равна 1).
Используя метод МО ЛКАО, рассмотрим возможность образования молекулы He 2 (рис. 3.10).

В этом случае два электрона займут связывающую молекулярную орбиталь, а два других – разрыхляющую. Выигрыша в энергии такое заселение двух орбиталей электронами не принесет. Следовательно, молекулы He 2 не существует.
Методом МО ЛКАО легко продемонстрировать парамагнитные свойства молекулы кислорода. С тем чтобы не загромождать рисунок, не будем рассматривать перекрывание 1s -орбиталей атомов кислорода первого (внутреннего) электронного слоя. Учтем, что p -орбитали второго (внешнего) электронного слоя могут перекрываться двумя способами. Одна из них перекроется с аналогичной с образованием -связи (рис. 3.11).

Две других p -АО перекроются по обе стороны от оси x с образованием двух -связей (рис. 3.12).

Энергии сконструированных молекулярных орбиталей могут быть определены по данным спектров поглощения веществ в ультрафиолетовой области. Так, среди молекулярных орбиталей молекулы кислорода, образовавшихся в результате перекрывания p -АО, две -связывающие вырожденные (с одинаковой энергией) орбитали обладают меньшей энергией, чем -связывающая, впрочем, как и *-разрыхляющие орбитали обладают меньшей энергией в сравнении с *-разрыхляющей орбиталью (рис. 3.13).

В молекуле O 2 два электрона с параллельными спинами оказались на двух вырожденных (с одинаковой энергией) *-разрыхляющих молекулярных орбиталях. Именно наличием неспаренных электронов и обусловлены парамагнитные свойства молекулы кислорода, которые станут заметными, если охладить кислород до жидкого состояния.
Среди двухатомных молекул одной из наиболее прочных является молекула CO. Метод МО ЛКАО легко позволяет объяснить этот факт (рис. 3.14, см. с. 18 ).

Результатом перекрывания p -орбиталей атомов O и C является образование двух вырожденных
-связывающих и одной -связывающей орбитали. Эти молекулярные орбитали займут шесть электронов. Следовательно, кратность связи равна трем.
Метод МО ЛКАО можно использовать не только для двухатомных молекул, но и для многоатомных. Разберем в качестве примера в рамках данного метода строение молекулы аммиака (рис. 3.15).

Поскольку три атома водорода имеют только три 1s -орбитали, то суммарное число образованных молекулярных орбиталей будет равно шести (три связывающих и три разрыхляющих). Два электрона атома азота окажутся на несвязывающей молекулярной орбитали (неподеленная электронная пара).

3.5. Геометрические формы молекул

Когда говорят о формах молекул, прежде всего имеют в виду взаимное расположение в пространстве ядер атомов. О форме молекулы имеет смысл говорить, когда молекула состоит из трех и более атомов (два ядра всегда находятся на одной прямой). Форма молекул определяется на основе теории отталкивания валентных (внешних) электронных пар. Согласно этой теории молекула всегда будет принимать форму, при которой отталкивание внешних электронных пар минимально (принцип минимума энергии). При этом необходимо иметь в виду следующие утверждения теории отталкивания.

1. Наибольшее отталкивание претерпевают неподеленные электронные пары.
2. Несколько меньше отталкивание между неподеленной парой и парой, участвующей в образовании связи.
3. Наименьшее отталкивание между электронными парами, участвующими в образовании связи. Но и этого бывает недостаточно, чтобы развести ядра атомов, участвующих в образовании химических связей, на максимальный угол.

В качестве примера рассмотрим формы водородных соединений элементов второго периода: BeH 2 , BH 3 , CH 4 , C 2 H 4 , C 2 H 2 , NH 3 , H 2 O.
Начнем с определения формы молекулы BeH 2 . Изобразим ее электронную формулу:

из которой ясно, что в молекуле отсутствуют неподеленные электронные пары. Следовательно, для электронных пар, связывающих атомы, есть возможность оттолкнуться на максимальное расстояние, при котором все три атома находятся на одной прямой, т.е. угол HBeH составляет 180°.
Молекула BH 3 состоит из четырех атомов. Согласно ее электронной формуле в ней отсутствуют неподеленные пары электронов:

Молекула приобретет такую форму, при которой расстояние между всеми связями максимально, а угол между ними равен 120°. Все четыре атома окажутся в одной плоскости – молекула плоская:

Электронная формула молекулы метана выглядит следующим образом:

Все атомы данной молекулы не могут оказаться в одной плоскости. В таком случае угол между связями равнялся бы 90°. Есть более оптимальное (с энергетической точки зрения) размещение атомов – тетраэдрическое. Угол между связями в этом случае равен 109°28".
Электронная формула этена имеет вид:

Естественно, все углы между химическими связями принимают максимальное значение – 120°.
Очевидно, что в молекуле ацетилена все атомы должны находиться на одной прямой:

H:C:::C:H.

Отличие молекулы аммиака NH 3 от всех предшествующих состоит в наличии в ней неподеленной пары электронов у атома азота:

Как уже указывалось, от неподеленной электронной пары более сильно отталкиваются электронные пары, участвующие в образовании связи. Неподеленная пара располагается симметрично относительно атомов водорода в молекуле аммиака:

Угол HNH меньше, чем угол HCH в молекуле метана (вследствие более сильного электронного отталкивания).
В молекуле воды неподеленных пар уже две:

Этим обусловлена уголковая форма молекулы:

Как следствие более сильного отталкивания неподеленных электронных пар, угол HOH еще меньше, чем угол HNH в молекуле аммиака.
Приведенные примеры достаточно наглядно демонстрируют возможности теории отталкивания валентных электронных пар. Она позволяет сравнительно легко предсказывать формы многих как неорганических, так и органических молекул.

3.6. Упражнения

1 . Какие виды связей можно отнести к химическим?
2. Какие два основных подхода к рассмотрению химической связи вам известны? В чем состоит их отличие?
3. Дайте определение валентности и степени окисления.
4. В чем состоят отличия простой ковалентной, донорно-акцепторной, дативной, металлической, ионной связей?
5. Как классифицируют межмолекулярные связи?
6. Что такое электроотрицательность? Из каких данных электроотрицательность рассчитывается? О чем электроотрицательности атомов, образующих химическую связь, позволяют судить? Как изменяется электроотрицательность атомов элементов при продвижении в периодической таблице Д.И.Менделеева сверху вниз и слева направо?
7. Какими правилами необходимо руководствоваться при рассмотрении строения молекул методом МО ЛКАО?
8. Используя метод валентных связей, объясните строение водородных соединений элементов
2-го периода.
9. Энергия диссоциации в ряду молекул Cl 2 , Br 2 , I 2 уменьшается (239 кДж/моль, 192 кДж/моль, 149 кДж/моль соответственно), однако энергия диссоциации молекулы F 2 (151 кДж/моль) значительно меньше, чем энергия диссоциации молекулы Cl 2 , и выпадает из общей закономерности. Объясните приведенные факты.
10. Почему при обычных условиях CO 2 – газ, а SiO 2 – твердое вещество, H 2 O – жидкость,
а H 2 S – газ? Попробуйте объяснить агрегатное состояние веществ.
11. Используя метод МО ЛКАО, объясните возникновение и особенности химической связи в молекулах B 2 , C 2 , N 2 , F 2 , LiH, CH 4 .
12. Используя теорию отталкивания валентных электронных пар, определите формы молекул кислородных соединений элементов 2-го периода.

Задача 236.
Описать с позиций метода ВС электронное строение молекулы BF 3 и иона BF 4 - .
Решение:
Электронная конфигурация валентного слоя атома бора 1s 2 2s 2 2p 1 . Электронное строение его валентного слоя в стационарном состоянии может быть представлено следующей графической схемой:

Три неспаренных электрона возбуждённого атома могут участвовать в образовании трёх ковалентных связей по обычному механизму с атомами фтора (1s 2 2s 2 2р 5), имеющими по одному неспаренному электрону, с образованием молекулы BF 3 .

Для образования иона BF 4 - должен присоединиться один ион (1s 2 2s 2 2р 6), все валентные электроны которого спарены. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов из фторид-иона и одной валентной p-орбитали атома бора.

Задача 237.
Сравнить способы образования ковалентных связей в молекулах CH 4 , NH 3 и в ионе NH 4 + . Могут ли существовать ионы CH 5 + и NH 4 2+ ?
Решение:
Электронная конфигурация атома углерода 1s 2 2s 2 2р 2 . Электронное строение его валентных орбиталей в стационарном состоянии может быть представлено следующей схемой:

Четыре неспаренных электрона возбуждённого атома углерода могут участвовать в образовании четырёх ковалентных связей по обычному механизму с атомами водорода (1s 1), имеющими по одному неспаренному, с образованием молекулы CH 4 .

Три неспаренных электрона невозбуждённого атома азота могут участвовать в образовании трёх ковалентных связей по обычному механизму с атомами водорода (1s 1), имеющими по одному неспаренному электрону, с образованием молекулы NH 3 .

Для образования иона NH 4 + к молекуле NH 3 должен присоединиться один ион H + (1s 0), имеющим одну свободную s-орбиталь. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов атома азота и одной вакантной s-орбитали атома водорода.

Углерод (1s 2 2s 2 2р 2) может образовать соединение CH 4 , но при этом валентные возможности углерода будут исчерпаны (нет неспаренных электронов, неподелённых пар электронов и валентных орбиталей на валентном энергетическом уровне), ион CH 5 + образоваться не может.

Азот (1s 2 2s 2 2р 3) может образовать соединение NH 3 (за счёт трёх неспаренных 2р-электронов) и ион NH 4 + (за счёт донорно-акцепторного механизма между молекулой NH 3 и ионом H +) , но при этом валентные возможности азота будут исчерпаны (нет неподелённых пар электронов, свободных валентных орбиталей и неспаренных электронов на валентном уровне), ион NH 5 2+ образоваться не может.

Задача 238 .
Какой атом или ион служит донором электронной пары при образовании иона BH 4 - ?
Решение:
Электронная конфигурация атома бора 1s 2 2s 2 2р 1 . Электронное строение его валентного слоя в стационарном состоянии может быть представлено следующей графической схемой:

При возбуждении атом бора переходит в состояние 1s 2 2s 1 2p 2 , а электронное строение его валентного слоя соответствует схеме:

Три неспаренных электрона возбуждённого атома бора могут участвовать в образовании трёх ковалентных связей по обычному механизму с атомами водорода (1s 1), имеющими по одному неспаренному электрону, с образованием молекулы BH 3 .

Для образования иона BH 4 - к молекуле BH 3 должен присоединиться ион H - (1s 2), имеющий на валентном уровне свободную пару электронов. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов иона и свободной (вакантной) 2р-орбитали.

Задача 239.
Объяснить с позиций метода ВС способность оксидов NО и NО 2 образовывать димерные молекулы.
Решение:
На внешнем электронном слое атома азота содержится два спаренных 2s-электрона и три неспаренных 2р-электрона (2s 2 2р 3). Атом кислорода на внешнем слое содержит пару 2s-электронов и четыре 2р-электрона, из которых два неспаренных (2s 2 2р 4).

а) В молекуле NO связь осуществляется по обычному ковалентному механизму за счёт двух неспаренных электронов атома азота и двух неспаренных электронов атома кислорода, с образованием двух ковалентных связей в молекуле. Электронная схема молекулы NO имеет вид:

Таким образом, в молекуле NO атом азота содержит один неспаренный 2р-электрон. Поэтому между двумя молекулами N 2 О 2 может образоваться ковалентная связь по обычному механизму. Валентная схема молекулы N 2 О 2 имеет вид:

В димере N 2 О 2 атомы азота и имеют восьмиэлектронную устойчивую конфигурацию. Структурная формула имеет вид:

б) В молекуле NO 2 атом азота соединён двумя ковалентными связями с одним атомом кислорода, находящимся в невозбуждённом состоянии, связь образуется за счёт двух неспаренных электронов атома азота и двух неспаренных электронов атома кислорода. Второй атом кислорода соединяется с атомом азота по донорно-акцепторному механизму за счёт пары электронов атома азота и свободной валентной 2р-орбитали атома кислорода. Молекула NO 2 содержит один неспаренный электрон у атома азота.

Валентная схема молекулы NO 2 имеет вид:

Две молекулы NO 2 могут соединиться друг с другом, образовав димер N 2 O 4 . Связь между двумя молекулами NO 2 образуется по обычному ковалентному механизму за счёт неспаренных электронов атомов азота. Валентная схема димера N 2 O 4 имеет вид:

Структурная формула димера N 2 O 2 имеет вид:

Задача 240.
Объяснить с позиций метода ВС возможность образования молекулы С 2 N 2 .
Решение:
Электронная конфигурация атома углерода 1s 2 2s 2 2р 2. Электронное строение его валентных орбиталей в стационарном состоянии может быть представлено следующей схемой:

При возбуждении атом углерода переходит в состояние 1s 2 2s 1 2р 3 , а электронное строение его валентных орбиталей соответствует схеме:

Электронная конфигурация атома азота 1s 2 2s 2 2р 3 . Электронное строение его валентных орбиталей в стационарном состоянии может быть представлено следующей схемой:

Для образования молекулы C 2 N 2 к каждому атому углерода присоединяется по одному атому азота. Связи между атомами углерода и азота образуются за счёт трёх неспаренных электронов углерода и трёх неспаренных электронов азота. Оставшийся неспаренный электрон одного атома углерода образует ковалентную связь по обычному механизму с неспаренным электроном другого атома углерода. Таким образом, в молекуле C 2 N 2 два атома углерода образуют ковалентную связь между собой и по три ковалентные связи с атомом азота по обычному механизму. Валентная схема молекулы C 2 N 2 будет иметь вид:

Структурная формула С 2 N 2 имеет вид:

Таким образом, молекула C 2 N 2 реально существует.

Теория валентных связей (МВС) применительно к комплексным соединениям была разработана Л.Полингом в 1930г. В настоящее время ее используют сравнительно редко, но она прекрасно служила около четверти века химии координационных соединений для объяснения некоторых свойств комплексов (пространственное строение, магнитные свойства). Несмотря на громоздкость количественных расчетов, большие проблемы в интерпретации разнообразных искажений октаэдрических комплексов, отсутствие предсказательной способности даже в случаях высокосимметричного геометрического строения координационных сфер и другие недостатки, МВС остается удобным инструментом, позволяющим наглядно на качественном уровне объяснить факт образования комплексов, дающим возможности оценивать взаимные предпочтения к связыванию, предрасположенность комплексов к гидролизу, поликонденсации, предсказывать состав и некоторые свойства карбонилов и родственных соединений и, конечно, объяснять, а во многих случаях и предсказывать магнитные свойства комплексов .

Основные положения МВС, касающиеся структуры комплексов формулируются следующим образом:

1. Связь между комплексообразователем и лигандами устанавливается по донорно-акцепторному механизму, причем в σ –связи лиганд является донором электронной пары ("кислотой Льюиса"), центральный атом – акцептором ("основанием Льюиса").

2. Мерой прочности связи служит степень перекрывания орбиталей. Для объяснения факта образования прочных связей при вполне конкретном пространственном расположении лигандов вокруг центрального атома, зачастую не совпадающим с пространственным расположением его собственных вакантных АО вводится понятие о гибридизации комплексообразователя, участвующих в σ –связывании. Тип гибридизации определяется числом, природой центрального атома и лигандов. Характер гибридизации определяет геометрическую форму комплекса.

3. Дополнительное упрочение комплекса обусловлено возникновением дополнительного π –связывания. При этом зачастую в качестве донора выступает электроположительный атом комплексообразователя, а акцептором – более электроотрицательный атом, за счет которого координируется лиганд. Такое донорно-акцепторное взаимодействие получило название дативного .



4. Магнитные свойства, проявляемые комплексом, объясняются особенностями заселения электронами орбиталей комплексообразователя. При наличии неспаренных электронов комплекс парамагнитен . Полное отсутствие неспаренных электронов обуславливает диамагнетизм комплексного соединения . Приближенное значение магнитного момента μ (в магнетонах Бора, μ В) можно рассчитать по формуле

, (4.10 )

где n – число неспаренных электронов.

Прежде чем разобрать несколько примеров применения МВС для анализа строения и свойств ряда комплексов,


полезно вспомнить некоторые сведения об электронном строении, валентных возможностях потенциальных комплексообразователей и лигандов, а также прокомментировать отдельные положения теории Л.Полинга.

Атомы второго периода, выступая в качестве комплексообразователей (Ве, В), а стало быть, устанавливая в заметной степени ковалентные связи с лигандами, ограничены в предельно достижимых КЧ, т.к. на валентном энергетическом уровне имеют только четыре орбиталями (2s – и 2р –). Элементы III-го и больших периодов располагают вакантными nd –орбиталями и за счет них могут проявить повышенные акцепторные свойства (увеличить КЧ до 6 и более, установить дополнительные π –связи с лигандами σ – и π –донорами). Однако, как уже отмечалось ранее (гл. 1.5), энергия nd –орбиталей довольно велика. В то же время их энергетическая выгодность для электронов усиливается при связывании рассматриваемого атома с сильно электроотрицательными элементами (особенно со F – , и лигандами, координирующимися атомами кислорода: О 2– , ОН – , ОН 2 и т.п.). Впервые предположение о возможности использования в связях внешних d –орбиталей было высказано в 1937г. Хиггинсом, а позднее оно нашло расчетное подтверждение.



Атомы переходных элементов располагают, к тому же еще и (n-1)d –орбиталями, которые гораздо более валентны, чем nd –орбитали, особенно у первых элементов декад, особенно в невысоких положительных степенях окисления. По мере заполнения (n-1)d –орбиталей электронами их акцепторные возможности ослабевают (усиливается вероятность использования в этом качестве nd –орбиталей), зато растут донорные свойства и, соответственно, усиливаются предпочтения к связыванию с лигандами σ –донорами и π –акцепторами.

Чтобы различать два вида комплексов, были введены понятия: внешнеорбитальные и внутриорбитальные (Таубе), спин-свободные и спин-спаренные (Ньюхольм), высокоспиновые и низкоспиновые (Оргел).

Участвующие в ковалентном связывании атомные орбитали должны быть сопоставимы по энергии и соответствовать друг другу по симметрии: располагаться таким образом, чтобы обеспечить перекрывание участками, в которых знаки волновых функций совпадают. Поскольку s –орбиталь среди валентных обычно имеет самую низкую энергию, она практически всегда используется в связывании, но из-за сферической симметрии она не может участвовать в π –перекрывании, а σ –взаимодействие может поддерживать в любом направлении (в том числе, и будучи задействована в процессах гибридизации). Симметрия р –орбиталей позволяет им участвовать как в σ –, так и в π –перекрываниях. В составе центрального атома для поддержания его КЧ (больше единицы: 6, 4, реже другие) р –орбитали предварительно гибридизуются с s – и, при необходимости, с d –орбиталями. Кроме того, симметрия р π –связывании (обычно, в составе донорных атомов лигандов). При высоких КЧ (4 и выше) в σ –связывании могут вовлекаться и d –орбитали подходящей симметрии (в квадратах и октаэдрах – расположенные лепестками вдоль прямоугольных осей координат d x 2 - y 2 , d z 2 , а при тетраэдрическом окружении – расположенные по биссектрисам координатных углов d xy , d xz , d yz). По причинам, которые будут пояснены позже, первые две орбитали имеют групповое обозначение d γ (или е g), а три другие – d ε (или t 2 g). Симметрия d –орбиталей позволяет им участвовать и в π –взаимодействии, причем, из-за некоторой направленности в сторону потенциального партнера они могут обеспечить более сильное перекрывание электронных облаков, чем то, что достигается при использовании в π –связях р –орбиталей сопоставимой энергии (близких по размеру).

Таблица 4.11

Форма и относительная прочность гибридных связей (Е * )

Наиболее часто встречающиеся типы гибридизации, соответствующие им (полученные расчетным путем) геометрические формы комплексов, а также относительная прочность σ –связей, образуемых с помощью соответствующих гибридных орбиталей, приведены в таблице 4.11.

Что касается третьего пункта, то поводом для постулирования этого положения стали примеры прочного связывания некоторых 4d – и 5d –элементов с лигандами, донорные свойства которых выражены достаточно слабо. Например, Pt(II), Hg(II), Au(III) лучше связываются с крупными галогенид-ионами, чем с F – ; они же образуют достаточно прочные комплексы с:PF 3 и ∶P(C 6 H 5) 3 , но вовсе не связываются с ∶РН 3 (напомним, что молекула ∶РН 3 очень неохотно связывается с таким активным акцептором электронной пары, как Н +). Эти факты были объяснены Полингом несколькими причинами, одна из которых – растущая кратность связи за счет дополнительного дативного π –взаимодействия комплексообразователей с конфигурациями d 8 , d 10 с d –орбиталями атомов Cl, Br, J, P. В свою очередь d –орбитали фосфора активней вовлекаются в связывание в составе таких лигандов, где их энергия понижена под влиянием собственных внутрилигандных сильно электроотрицательных атомов (F) или группировок (С 6 Н 5).

Существование разнообразных форм дополнительного π –связывания M–L было в дальнейшем подкреплено множеством разнообразных примеров. Важнейшие типы π–взаимодействия в комплексах могут быть систематизированы следующим образом (рис.4.26):

а) π d (M) → p (L) : частичный переход электронов с d р –орбитали лиганда;

б) π d (M) → d (L) : частичный переход электронов с d –орбитали металла на вакантные d –орбитали лиганда;

в) π p (M) ← p (L) : частичный переход электронов с р р –орбитали металла;

г) π d (M) ← p (L) : частичный переход электронов с р –орбитали лиганда на вакантные d –орбитали металла.

Теперь можно закрепить применение разобранных положений теории Полинга на конкретных примерах, при их анализе рассмотрим и магнитные свойства комплексов. Вначале обсудим состав, структуру и некоторые свойства комплексных соединений d –металлов.

Для первых d –элементов характерны высшие положительные степени окисления. Это формально означает, что в качестве комплексообразователя выступает полностью ионизированный атом, имеющий много пустых орбиталей и, соответственно, он должен предпочтительно связываться с лигандами σ – и π –донорами. В частности, для самыми стабильными комплексами Ti 4+ являются фторидный (в меньшей степени – другие галогенидные) и кислородсодержащие. Если не принимать во внимание полимерные соединения, то это анионный комплекс 2– и катионный 2+ (аквокомплекс " 4+ " очень сильно гидролизуется под сильным поляризующим воздействием центрального атома; в степени окисления +III аквокомплекс гидролизуется в гораздо меньшей степени: 3+). Электронная конфигурация Ti 4+ : 3d 0 4s 0 4p 0 , в σ –связывании с лигандами участвуют d 2 3 -гибридные орбитали, пустые d ε могут быть задействованы в дополнительном многоцентровом π d (M) ← p (L) –связывании:

Катионные комплексы Ti 4+ и Ti 3+ также являются внутриорбитальными, имеют октаэдрическую симметрию, но в отличие от 3+ (и 2–) дигидроксо-диаквотитан (IV) имеет искаженную структуру: связи с гидродроксо-группами короче, чем с молекулами воды (КЧ = 2+4). Это можно объяснить неравноценным π –связыванием (более сильными π –донорными свойствами ионов ОН –). В то же время 3+ является парамагнитной частицей, тогда, как 2– и 3– , 2+ и + , однако данные частицы (особенно последние) легко вступают в реакции замещения на F – или (менее охотно) на кислородсодержащие лиганды:

3– , 3+ , 3–)

· все комплексы Cr 3+ должны быть парамагнитными, т.к. комплексообразователь располагает тремя электронами;

(магнитные моменты всех комплексов Cr 3+ соответствуют наличию

трех неспаренных электронов ).

Отметим, что из-за частичной заселенности d ε –орбиталей, Cr 3+ не может проявить ни π –акцепторных свойств (в составе 3+), ни π –донорных (в составе 3–). Любопытно, что цианидные комплексы (карбонилы и другие комплексы с лигандами активными π –акцепторами) нередко проявляют высокое сродство к электрону, что позволяет в составе таких соединений стабилизировать у d -элементов аномально низкие (порой даже отрицательные) степени окисления. В частности К 3 по реакции с атомарным водородом (цинк в солянокислой среде) удается восстановить до К 6 . Причем в составе нового комплекса атом хрома принимает три дополнительных электрона на свои орбитали и, приобретая нулевую степень окисления, должен был бы, тем самым, воспроизвести электронную конфигурацию нейтрального атома 3d 5 4s 1 4p 0 с шестью неспаренными электронами. Однако комплекс К 6 диамагнитен. Подобные факты дали основания предположить, что в комплексах с активными π –акцепторами меняется электронное строение комплексообразователя: на d -подуровне в первую очередь заселяются d ε –орбитали (поначалу в соответствие с правилом Хунда, а при конфигурациях d 4 , d 5 и d 6 – попарно). Это позволяет, во-первых, сохранять (n-1)d γ –орбитали вакантными и использовать их для внутриорбитальной гибридизации и σ –связывания, а во-вторых, попарно заполненные d ε –орбитали могут быть задействованы для дополнительного π d (M) → p (L) –взаимодействия, что приводит к увеличению кратности связи комплексообразователь лиганд . Принимая во внимание эти рассуждения, образование комплекса 6– с точки зрения МВС может быть схематично показано следующим образом:

Особенность цианид-ионов в качестве лигандов подтверждает и сравнение комплексов хрома (II): при одинаковом электронном строении центрального атома (d 4) магнитные моменты 4– , с одной стороны, и 2+ , 4– , 4– ,…, с другой, отличаются:

В то же время МВС оказывается бессилен перед объяснением различий в оптических свойствах (окрашенности) и деталей пространственного строения: в отличие от цианидного комплекса все прочие, несмотря на однородный лигандный состав и равноценность участвующих в σ –связывании гибридизованных орбиталей центрального атома, характеризуются слабым тетрагональным искажением октаэдрической координации (КЧ = 4+2).

При дальнейшем повышении заряда ядра и одновременном увеличении числа электронов на валентных орбиталях наблюдается:

ü растущая стабилизация низких степеней окисления d –элементов;

ü усиление π –донорных свойств атомов (ионов) d –металлов. Соответственно постепенно ослабевает взаимодействие с лигандами σ – и π –донорами, растет предпочтение к связыванию с лигандами π –акцепторами, как следствие – комплексы становятся более разнообразными;

ü постепенный переход к внешнеорбитальным комплексам.

Рассмотрим некоторые комплексы Ni (II), Cu (II) и Cu (I).

Комплексы Cu (II) весьма разнообразны по лигандному составу: перечень только монодентантных лигандов, при связывании с которыми могут быть получены островные комплексы, включает в себя Н 2 О, OH – , Г – , NH 3 , SCN – , S 2 O 3 2– , NO 2 – и т.д. Весьма разнообразна их окраска: голубые, желто-зеленые, сине-фиолетовые,… . В то же время магнитные свойства комплексов одинаковы, а их структуры сходны или родственны:

– при электронной конфигурации центрального атома d 9 во всех комплексах иона Cu 2+ обнаруживается один неспаренный электрон;

– в большинстве комплексов реализуется тетрагонально искаженная октаэдрическая координация (КЧ = 4+2); порой оба или один из слабо связанных лигандов полностью покидают координационную сферу (при этом получаются или квадратные – КЧ=4 (нет тетраэдров! ), или квадратно-пирамидальные комплексы – КЧ=4+1):

КЧ = 4+2 (вытянутый октаэдр) КЧ = 4+1 (квадратная пирамида) КЧ = 4 (квадрат)
2+ , 4– , 2+ , 2+ , 4– 3 – , 2+ 2– , 2+ , 2– , 2–

С точки зрения МВС все комплексы Cu (II) являются внешнеорбитальными:

Напомним, что для формирования электронных облаков, ориентированных к вершинам квадратной пирамиды, в гибридизацию должна вовлекаться орбиталь d x 2 - y 2 . Она же необходима для образования плоско-квадратных комплексов, в то время как р z –орбиталь из гибридизации извлекается. Кроме того, следует отметить, что, в соответствие с МВС, в хлоридном и гидроксокомплексе возможно слабое дополнительное π –связывание (ионы Cl – являются слабыми π –донорами и π –акцепторами; ионы ОН – обладают гораздо более выраженными π –донорными свойствами, но центральный атом π –акцепторные свойства может реализовать только за счет высоколежащих 4d –орбиталей). Несмотря на объяснения способов ковалентного взаимодействия центрального атома и лигандов, МВС, по-прежнему, бессилен предложить причины, как спектральной активности, так и структурных особенностей комплексов. Любопытно, что комплексы Cu (I) наоборот, в подавляющем большинстве бесцветны, но гораздо более разнообразны в структурном плане, несмотря на более низкие координационные числа (КЧ: 2, 3, 4; координационные формы: линия, треугольник, тетраэдр – нет квадратов !):

Что касается комплексов s – и р –элементов, то кратко отметим лишь некоторые важные закономерности:

· В качестве комплексообразователей выступают ионы элементов (см. табл.4.7) с промежуточным поляризующим действием (электро-отрицательностью), однако важно понимать, что у большинства рассматриваемых элементов эти характеристики заметно выше, чем у d –металлов;

· Практически все потенциальные комплексообразователи образуют только октаэдрические комплексы (у Ве 2+ , В 3+ известны только тетраэдры; Al 3+ и Ga 3+ наряду с октаэдрами тоже порой образуют тетраэдрические комплексы; Sn 2+ , Pb 2+ имеют только тетраэдрические и тригонально-пирамидальные комплексы), что требует вовлечение в гибридизацию и σ –взаимодействие nd γ -орбиталей (за счет s – и р –орбиталей может быть реализовано только КЧ=4). Это предполагает связывание с сильно электроотрицательными атомами, а также то, что за счет вакантных nd ε -орбиталей потенциальные комплексообразователи являются достаточно активными π –акцепторами.

· В качестве лигандов в подавляющем большинстве случаев выступают активные σ – и π –доноры: ОН 2 (только при связывании с ионами, не вызывающими сильный гидролиз, т.е. п/д , которых минимально в данном ряду элементов), ОН – (при связывании с ионами, характеризующимися промежуточным уровнем п/д в ряду данных элементов), одноатомные лиганды: О 2– , F – . Р –элементы VI–го, V–го и, в меньшей степени, IV–го периодов имеют заполненные (n-1)d 10 –подуровни и, поэтому могут участвовать в π d (M) → d (L) –взаимодействии. Соответственно, для таких элементов даже в водной среде могут оказаться вполне конкурентными, выгодными связи М–Cl и Cl – в качестве потенциального лиганда. В ряде случаев стабилизируются комплексы и с более крупными галогенами. Те же элементы, но гораздо реже могут образовать островные воднорастворимые комплексы с лигандами S 2– и SH – .

· Все комплексы р –элементов диамагнитны и в подавляющем большинстве своем – бесцветны. Чрезвычайно редкие исключения возможны в случае комплексов с лигандами π –акцепторами.

Таблица 4.12

Составы важнейших островных

воднорастворимых комплексов р –элементов

IIа IIIа IVа VIа
2+ 2– 2– – 2– – –– –– ––
2+ 3+ – – 3– 3– 2– 2– ––
То же, что у Al 3+ 2– 2– 2– – AsO 4 3– ; – – – ––
То же, что у Al 3+ , кроме гидроксокомплекса , дополнительно – 3– 2+ 2– 2– 2– ; 2+ – – – – – ; + – 3– – ; 2– 2–
3– ; 2– 2– 2– ; 2+ – – 3+ – 2+ [Ро(OH) 6 ] 2– [РоCl 6 ] 2– ; [Ро(OH 2) 6 ] 2+

В заключение кратко обсудим применение идей МВС для объяснения состава, структуры и некоторых свойств достаточно своеобразных соединений: карбонилов и карбонильных комплексов d –элементов (известны также и полилигандные карбонилы: карбонилнитрозилы (M(CO) x (NO) y), карбонилгалогениды (M(CO) x Г y), карбонилгидриды (M(CO) x H y), карбонил-металлоцены (M(CO) x (C 5 H 5) y) и т.п., в том числе, полиядерные, содержащие несколько атомов d –металла). Состав большинства из них подчиняется правилам, сформулированным в 20-е годы ХХв. на рубеже становления квантово-механической модели строения атома: первое и модифицированное правило Сиджвика (правило 18 электронов ): наиболее стабильными являются комплексы, в составе которых центральный атом имеет полностью завершенную (n-1)d 10 ns 2 np 6 -конфигурацию . В расчет принимаются валентные электроны d –элемента и электроны лигандов, задействованные в связях M–L . Правило основано на предположении попарного заселения валентных орбиталей электронами центрального атома и донорно-акцепторном взаимодействии комплексообразователь–лиганд (лиганды-радикалы, типа NO, рассматриваются как доноры трех электронов; лиганды с протяженными π –системами являются донорами всех своих π –электронов).

Таблица 4.13

Состав известных карбонилов 3d -элементов

Объем и тематика данного учебника не позволяют выполнить анализ возможных причин, ограничивающих круг элементов, склонных к образованию карбонилов (табл.4.14). Отметим только, что с учетом родственных соединений они получены для всех d -металлов за исключением

Таблица 4.14

Круг d -элементов, входящих в состав карбонилов

Sc Ti V Cr Mn Fe Co Ni Cu Zn
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
La Hf Ta W Re Os Ir Pt Au Hg

Nb, Ta, а также элементов подгрупп скандия и цинка. В то же время состав и структуры простейших карбонилов идеально согласуются с правилом Сиджвика и теорией Полинга. В частности, чередование мономерных (у Cr, Fe и Ni) и димерных молекул (у V, Mn и Со) есть результат того, что элементы нечетных групп имеют нечетное число валентных электронов, поэтому мономерные молекулы являются радикалами и способны объединяться за счет связи М–М (такие соединения принято называть кластерами ):

ü примеры боснование состава на основе модифицированного правила Сиджвика:

ü структуры на основе теории Полинга

КЧ Cr = 6 КЧ Fe = 5 КЧ Ni = 4

октаэдр тригональная тетраэдр

бипирамида

d 2 3 dsр 3 3

КЧ Mn = 6 КЧ Со = 4+1

октаэдр тригональная

бипирамида

d 2 3 dsр 3

У Fe, Co и некоторых тяжелых d –металлов известны "сложные карбонилы". Убедительных объяснений их состава и избирательного существования, пока не выработано. В то же время особенности их структуры (наличие связей М–М , число мостиковых или концевых молекул СО, пространственное окружение) можно предвидеть, применяя теорию Сиджвика/Полинга (см., например, учебник Дж.Хьюи "Неорганическая химия. Строение вещества и реакционная способность").

Эволюция метода валентных связей

Впервые приближенное решение уравнения Шредингера для одной из простейших молекул - молекулы водорода было произведено в 1927 г. В. Гейтлером и Ф. Лондоном . Эти авторы сначала рассмотрели систему из двух атомов водорода, находящихся на большом расстоянии друг от друга. При этом условии можно учитывать только взаимодействие каждого электрона со «своим» ядром, а всеми остальными взаимодействиями (взаимное отталкивание ядер, притяжение каждого электрона к «чужому» ядру, взаимодействие между электронами) можно пренебречь. Тогда оказывается возможным выразить зависимость волновой функции рассматриваемой системы от координат и тем самым определить плотность общего электронного облака (электронную плотность) в любой точке пространства.

Далее Гейтлер и Лондон предположили, что найденная ими зависимость волновой функции от координат сохраняется и при сближении атомов водорода. При этом, однако, необходимо уже учитывать и те взаимодействия (между ядрами, между электронами и т. д.), которыми при значительном удалении атомов друг от друга можно было пренебрегать. Эти дополнительные взаимодействия рассматриваются как некоторые поправки («возмущения») к исходному состоянию электронов в свободных атомах водорода.

В результате были получены уравнения, позволяющие найти зависимость потенциальной энергии Е системы, состоящей из двух атомов водорода, от расстояния r между ядрами этих атомов. При этом оказалось, что результаты расчета зависят от того, одинаковы или противоположны по знаку спины взаимодействующих электронов. При совпадающем направлении спинов сближение атомов приводит к непрерывному возрастанию энергии системы. В последнем случае для сближения атомов требуется затрата энергии, так что такой процесс оказывается энергетически невыгодным и химическая связь между атомами не возникает. При противоположно направленных спинах сближение атомов до некоторого расстояния го сопровождается уменьшением энергии системы. При r = r 0 система обладает наименьшей потенциальной энергией, т.е. находится в наиболее устойчивом состоянии; дальнейшее сближение атомов вновь приводит к возрастанию энергии. Но это и означает, что в случае противоположно направленных спинов электронов образуется молекула Н 2 - устойчивая система из двух атомов водорода, находящихся на определенном расстоянии друг от друга.

Образование химической связи между атомами водорода является результатом взаимопроникновения («перекрывания») электронных облаков, происходящего при сближении взаимодействующих атомов. Вследствие такого взаимопроникновения плотность отрицательного электрического заряда в межъядерном пространстве возрастает. Положительно заряженные ядра атомов притягиваются к области перекрывания электронных облаков. Это притяжение преобладает над взаимным отталкиванием одноименно заряженных электронов, так что в результате образуется устойчивая молекула.

Таким образом, проведенное исследование позволило сделать вывод, что химическая связь в молекуле водорода осуществляется путем образования пары электронов с противоположно направленными спинами, принадлежащей обоим атомам. Разработанная на этой основе теория химической связи и для более сложных молекул получила название метода валентных связей . Важным положением является то, что всякий раз, когда химическая связь образуется, спины пары электронов должны быть антипараллельными. Это находится в соответствии с принципом Паули и подчеркивает, что при образовании химической связи электроны переходят в новое квантовое состояние.

Наличие спаренных электронов является «индикатором» наличия химической связи, но не причиной ее образования. Изучение причины образования химической связи к настоящему времени показало, что энергия системы из двух атомов понижается тогда, когда электроны с большей вероятностью находятся в межъядерном пространстве (как бы «задерживаются» в этой области). Такая задержка приводит к понижению их кинетической энергии, в результате отрицательная составляющая полной энергии молекулы преобладает, молекула становится устойчивой или, как говорят, образуется химическая связь.

Метод валентных связей дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул. Хотя этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул, все же он сыграл большую роль в разработке квантово-механической теории химической связи и не потерял своего значения до настоящего времени в качественном понимании природы химической связи.

Основные положения метода валентных связей

Метод валентных связей описывает механизм возникновения ковалентной связи и базируется на следующих основных принципах:

  1. Химическая связь между двумя атомами осуществляется за счет одной или нескольких общих электронных пар.

Оба электрона общей электронной пары удерживаются одновременно двумя ядрами, что энергетически более выгодно, чем нахождение каждого электрона в поле «своего» ядра.

Такая химическая связь является двухцентровой.


Например , изобразим образование молекулы F 2 с помощью квантовых ячеек внешнего энергетического уровня (электронная формула атома F : 1s 2 2s 2 2p 5 ):

Спаренные электроны внешнего уровня атома для образования химических связей с другими атомами должны разъединяться (распариваться). Атом перейдет в новое валентное состояние. Затрата энергии на такой процесс возбуждения атома компенсируется энергией, выделяющейся при образовании химической связи (следует помнить, что возможности возбуждения атомов ограничены числом свободных орбиталей в соответствующих энергетических подуровнях).

  1. Ковалентная связь обладает свойством насыщаемости, вследствие чего молекулы имеют вполне определенный состав.

Например , при образовании молекулы метана СН 4 каждый из четырех неспаренных электронов возбужденного атома углерода соединился с электроном атома водорода, образовались 4 ковалентные связи; больше электронных пар в данном случае образоваться не может, молекулы СН 5 , СН 6 и т.д. не существуют.

(Примечание: взаимодействие валентнонасыщенных соединений между собой возможно с образованием одной или нескольких дополнительных донорно-акцепторных связей по особому механизму).

  1. Ковалентная связь направлена в пространстве, что обусловливает пространственную структуру молекул (свойство направленности).

В зависимости от того, какими электронами осуществляются связи - s-, р-, d- или f- электронами, существенно различны энергии связей, длины связей, а также их направление в пространстве.

Электронные облака имеют различную форму, поэтому их взаимное перекрывание осуществляется несколькими способами: различают σ- (сигма), π- (пи) и δ (дельта)-связи.

Если перекрывание электронных облаков происходит вдоль линии, соединяющей ядра - это σ- связь; если облака перекрываются вне этой линии, возникают π- и δ -связи.

Если между атомами возникла одна общая электронная пара (обычно σ- связь), такая связь называется одинарной, если две и более, то кратной: двойной, тройной.


Например , образование молекулы азота N 2 осуществляется тремя общими электронными парами. У каждого атома азота в образовании связей участвует 3 неспаренных р -электрона, направленных в трехмерном пространстве под углом 90 0 друг к другу и ориентированных соответственно по осям х, у, z (таковы свойства р -подуровня и р -орбиталей, диктуемые магнитным квантовым числом).

Два атома азота, соединяясь в молекулу N 2 , могут образовать одну σ- связь (перекрываются облака, ориентированные вдоль оси х ) и две π- связи (перекрываются облака, ориентированные вдоль осей у и z ).

Гибридизация атомных орбиталей

Cтруктура молекул зависит прежде всего от вида и свойств тех орбиталей, которые атомы предоставляют для образования химических связей. Но, помимо этого фактора, на пространственное строение молекул влияет явление гибридизации орбиталей.


Гибридизацией называется образование новых равноценных по форме и энергии орбиталей из орбиталей разного типа. Смешанные, гибридные орбитали на схемах изображают условно:

sp-гибридизация


Из одной s -орбитали и одной р -орбитали образуются две гибридные, смешанные орбитали sp -типа, направленные по отношению друг к другу на 180°.

Например: линейную форму имеют молекулы ВеН 2 и SnCl 2 с sp -гибридизацией атома бериллия и олова соответсвенно.

sp 2 -гибридизация


Из одной s -орбитали и двух р -орбиталей образуются три sp 2 -гибридные орбитали, расположенные в одной плоскости под углом 120° друг к другу.

Взаимная ориентация трех sp 2 -гибридных орбиталей - тригональная. Концепцию sp 2 -гибридизации применяют для описания плоских молекул тригональной формы.

Например: молекула фторида алюминия A1F 3 . Возбуждение атома алюминия сопровождается распариванием s 2 -электронов внешнего уровня на p -подуровень. Следовательно, электронная конфигурация внешнего уровня атома алюминия в возбужденном состоянии - 3s 1 3p 2 . Заселенные электронами орбитали атома алюминия гибридизируются и ориентируются в одной плоскости под углом 120° друг к другу. Каждое из трех электронных облаков гибридных sp 2 -орбиталей перекрывается с электронными облаками p -орбиталей трех атомов фтора.

sp 3 -гибридизация


sp 3 -гибридизация имеет место, если объединяются одна s -орбиталь и три р -орбитали; образуются четыре sp 3 -гибридные орбитали, ориентированные уже не в одной плоскости, а в объеме тетраэдра и направленные от центра тетраэдра к его 4 вершинам; валентный угол между двумя химическими связями составляет 109°28".

Например: строение молекулы метана СН 4 . Атом углерода в возбужденном состоянии имеет четыре неспаренных электрона: один s- и три р- электрона. Казалось бы, четыре химические связи, образованные ими с s- электронами четырех атомов водорода, должны быть неравноценными. Однако экспериментально установлено, что все 4 связи в молекуле СН 4 совершенно идентичны по длине и энергии, а углы между связями составляют 109°28". Следовательно, в молекуле СН 4 имеет место sp 3 -гибридизация.

Возможны более сложные случаи гибридизации с участием d -электронов, (например, sp 3 d 2 - гибридизация).

Явление гибридизации, т.е. смешения, выравнивания электронной плотности, энергетически выгодно для атома, поскольку у гибридных орбиталей происходит более глубокое перекрывание и образуются более прочные химические связи. Небольшие затраты энергии на возбуждение атома и гибридизацию орбиталей с избытком компенсируются энергией, выделяющейся при возникновении химических связей. Валентные углы диктуются соображениями максимальной симметрии и устойчивости.

На гибридных орбиталях, как и на обычных орбиталях, может располагаться не только по одному электрону, но и по два. Например, четыре sp 3 -гибридные орбитали атома кислорода О таковы, что две из них содержат по паре электронов, а две - одному неспаренному электрону. С современных позиций строение молекулы воды рассматривается с учетом гибридизации орбиталей атома О и тетраэдрической структуры молекулы Н 2 O в целом.

Валентность по обменному механизму метода

Способность атома присоединять или замещать определенное число других атомов с образованием химических связей называется валентностью . Согласно обменному механизму метода валентных связей каждый атом отдает на образование общей электронной пары (ковалентной связи) по одному неспаренному электрону. Количественной мерой валентности в обменном механизме метода валентных связей считают число неспаренных электронов у атома в основном или возбужденном состоянии атома. Это неспаренные электроны внешних оболочек у s- и p- элементов, внешних и предвнешних оболочек у d- элементов, внешних, предвнешних и предпредвнешних оболочек у f -элементов.

При образовании химической связи атом может переходить в возбужденное состояние в результате разъединения пары (или пар) электронов и переходе одного электрона (или нескольких электронов, равных числу разъединенных пар) в свободную орбиталь той же оболочки.

Например: электронная конфигурация кальция в основном состоянии записывается как:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

В соответствии с обменным механизмом метода валентных связей валентность его равна нулю В=0 . У атома кальция в четвертой оболочке (n=4 ) имеются вакантные р- орбитали. При возбуждении атома происходит распаривание электронов и один из 4s -электронов переходит в свободную -орбиталь. Валентность кальция в возбужденном состоянии равна двум, т.е. при распаривании валентность увеличивается на две единицы:

В отличие от кислорода и фтора, электронные пары которых не могут разъединяться, так как во второй оболочке нет вакантных орбиталей, электронные пары атомов серы и хлора могут распариваться в вакантные орбитали 3d -подоболочки, соответственно сера кроме валентности основного состояния 1 и 2 , имеет еще валентности 4 и 6 в возбужденном состоянии, а хлор кроме валентности 1 в основном состоянии, имеет валентности 3, 5 и 7 в возбужденном состоянии.


Электронные конфигурации атомов некоторых злементов в основном и возбужденном состояниях

Элемент Основное состояние Возбужденное состояние
Электронная
конфигурация
Заполнение орбиталей Валентность Электронная
конфигурация
Заполнение орбиталей Валентность
s p d s p d
Водород 1s 1 1
Гелий 1s 2 0
Бериллий 2s 2 0 2s 1 2p 1 2
Углерод 2s 2 2p 2 1,2 2s 1 2p 3 1,2,4
Кислород 2s 2 2p 4 1,2
Фтор 2s 2 2p 5 1
Сера 3s 2 3p 4
1,2 3s 1 3p 3 3d 2
1,2,4,6
Хлор 3s 2 3p 5
1 3s 1 3p 3 3d 3
1,3,5,7

У атомов большинства d- и f -элементов на внешних оболочках в основном состоянии нет неспаренных электронов, поэтому их валентность в основном состоянии равна нулю, несмотря на то, что на предвнешних d- и f -подоболочках имеются неспаренные электроны. Последние не могут образовывать электронные пары с электронами других атомов, так как закрыты электронами внешней оболочки. При возбуждении атома распаренные электроны внешней оболочки вступают в химическую связь и открывают внутренние электронные оболочки.

Например: валентность железа в основном состоянии равна нулю:

В возбужденном состоянии происходит разъединение 4s -пары электронов:

Валентность железа в возбужденном состоянии определяется не только 4s -, 4p -, но и 3d -неспаренными электронами. Однако пара 3d -электронов не может разъединиться, потому что в третьей оболочке нет вакантных орбиталей, поэтому максимальная валентность железа равна шести.

У осмия при возбуждении могут разъединяться не только внешние 6s -электроны, но и предвнешние 5d -электроны, поскольку в пятой оболочке имеется еще 5f -подоболочка со свободными орбиталями, поэтому максимальная валентность осмия равна восьми: